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Editorial foreword

EDITORIAL FOREWORD

Issues 7 and 8 of the Ukrainian Journal of Physics
(V. 64, Nos. 7 and 8, 2019) contain original papers
presented at the conference on New Trends in
High-Energy Physics, organized by the Bogolyu-

bov Institute for Theoretical Physics (BITP),
National Academy of Sciences of Ukraine
and held in Odessa on May 12-18, 2019,

https://indico.bitp.kiev.ua/event/1/. The present is-
sues are dedicated to the 110-th anniversary of great
scientist M.M. Bogolyubov, founder and first direc-
tor of BITP. They collect experimental (No. 7) and
theoretical /phenomenological (No. 8) papers.  As
guest editors, we made sure that the submitted
papers, presented and discussed at the Conference,

RELATIVITY

CLASSICAL
PHYSICS

“New Trends” in Odessa. Credit: A. Burgazli

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

have undergone regular submission procedures and
passed peer review by experts.

We thank all participants for coming to Odessa
and making the Conference successful. We acknowl-
edge the authors of the present publication for their
valuable contributions, marking new trends in high-
energy physics.

The Conference Program and pdf versions of all
talks presented at the Conference are available at the
Conference site: https://indico.bitp.kiev.ua/event/1/.

The next conference of this series is scheduled to
be held in Kyiv by the end of June 2021.

Ldszl6 JENKOVSZKY and Rainer SCHICKER,
Guest Editors
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EFFECTS OF SUPERSTATISTICS
ON THE LOCATION OF THE EFFECTIVE
QCD CRITICAL END POINT

Effects of the partial thermalization during the chiral symmetry restoration at the finite tem-
perature and quark chemical potential are considered for the position of the critical end point
in an effective description of the QCD phase diagram. We find that these effects cause the
critical end point to be displaced toward larger values of the temperature and lower values of
the quark chemical potential, as compared to the case where the system can be regarded as
completely thermalized. These effects may be important for relativistic heavy ion collisions,
where the number of subsystems making up the whole interaction volume can be linked to the
finite number of participants in the reaction.

Keywords: superstatistics, QCD phase diagram, critical end point, relativistic heavy-ion

collisions.

The usual thermal description of a relativistic heavy-
ion collision assumes that the produced matter
reaches equilibrium, characterized by values of the
temperature 7" and the baryon chemical potential p,
common within the whole interaction volume, after
some time from the beginning of the reaction. The
system evolution is subsequently described by the
time evolution of the temperature down to a ki-

© A. AYALA, M. HENTSCHINSKI, L.A. HERNANDEZ,
M. LOEWE, R. ZAMORA, 2019

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

netic freeze-out, where particle spectra are estab-
lished. This implicitly assumes the validity of the
Gibbs—Boltzmann statistics and system’s adiabatic
evolution.

For expansion rates not too large compared to the
interaction rate, the adiabatic evolution can perhaps
be safely assumed. However, the Gibbs—Boltzmann
statistics can be applied only to systems in the ther-
modynamical limit, namely, long after the relaxation
time has elapsed and the randomization has been
achieved within system’s volume. In the case of a rela-
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tivistic heavy-ion collision, the reaction starts off from
nucleon-nucleon interactions. This means that the en-
tire reaction volume is made, at the beginning, of a
superposition of interacting pairs of nucleons. If the
thermalization is achieved, it seems natural to assume
that it starts off in each of the interacting nucleon pair
subsystems and later spreads to the entire volume. In
this scenario, the temperature and chemical potential
within each subsystem may not be the same for other
subsystems. Thus, a superposition of statistics, one
in the usual Gibbs-Boltzmann sense for particles in
each subsystem and another one, for the probabil-
ity to find particular values for 7" and p for different
subsystem, seems appropriate. This is described by
the so-called superstatistics scenario which describes
a nonextensive behavior that naturally arises due to
fluctuations in T or p over the system’s volume. This
feature could be of particular relevance, when study-
ing the position of the critical end point (CEP) in
the QCD phase diagram, where one resorts to mea-
suring ratios of fluctuations in conserved charges with
the expectation that the volume factor cancels out in
the ratio. If the thermalization is not complete, this
expectation cannot hold, and a more sophisticated
treatment is called for.

From the theoretical side, efforts to locate the CEP
employing several techniques [1-20] were recently car-
ried out. In all of these cases, the full thermaliza-
tion over the whole reaction volume has been as-
sumed. From the experimental side, the STAR BES-
I program has recently studied heavy-ion collisions
in the energy range 200 GeV > /syny > 7.7 GeV
[21]. Future experiments [22-24] will continue to tho-
roughly explore the QCD phase diagram, using dif-
ferent system sizes and varying the temperature and
baryon density using different collision energies down
to about \/syn ~ 5 GeV.

The superstatistics scenario has been explored in
the context of relativistic heavy-ion collisions in many
papers, e.g. Refs. [25-41] and references therein, with
a particular focus on the study of imprints of the su-
perstatistics on the particle production, using a par-
ticular version, the so-called Tsallis statistics [42]. Its
use in the context of the computation of the rapidity
distribution profile for the stopping in heavy ion colli-
sions has been recently questioned in Ref. [43]. It has
also been implemented to study generalized entropies
and generalized Newton’s law in Refs. [44-47]. The
superstatistics concept has been nicely described in
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Refs. [48, 49]. In this work, we summarize the find-
ings of Ref. [50] describing the implications of the
superstatistics, when applied to temperature fluctua-
tions for the location of the CEP in the QCD phase
diagram.

For a system that has not yet reached a full equi-
librium and contains space-time fluctuations of an in-
tensive parameter 3, such as the inverse temperature
or chemical potential, one can still think of dividing
the full volume into spatial subsystems, where [ is
approximately constant. Within each subsystem, one
can apply the ordinary Gibbs-Boltzmann statistics,
namely, one can use the ordinary density matrix giv-
ing rise to the Boltzmann factor e ## | where H cor-
responds to the Hamiltonian for the states in each
subsystem. The whole system can thus be described
in terms of a space-time average over the different val-
ues that S8 could take for the different subsystems. In
this way, one obtains a superposition of two statistics,
one referring to the Boltzmann factor e ## and the
other for 3, hence, the name superstatistics.

To implement the scenario, one defines an averaged
Boltzmann factor

B(I) = / F(B)e PP ap, 1)
0

where f(f) is the probability distribution of 5. The
partition function then becomes

o0

Z = Ty[B(H)] = / B(E)dE, 2)

where the last equality holds for a suitably chosen set
of eigenstates of the Hamiltonian.

When all the subsystems can be described with the
same probability distribution [44], a possible choice to
distribute the random variable 3 is the x? distribu-
tion,

1 N N/2
10~ o () A @

where I' is the Gamma function, N represents the
number of subsystems that make up the whole sys-
tem, and

By = / B1(8)dB = (5) (4)
0

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8



Effects of Superstatistics on the Location

is the average of the distribution. The x? is the dis-
tribution that emerges for a random variable that is
made up of the sum of the squares of random vari-
ables X;, each of which is distributed with a Gaus-
sian probability distribution with vanishing average
and unit variance. This means that if we take

N
p=> X7, (5)
i=1

then § is distributed according to Eq. (3). Moreover,
its variance is given by

(6%~ 63 = 3. (6)

Given that § is a positive definite quantity, thinking
of it as being the sum of positive definite random
variables is an adequate model. Note, however, that
these variables do not necessarily correspond to the
inverse temperature in each of the subsystems. Ne-
vertheless, since the use of the y? distribution allows
for an analytical treatment, we hereby take this as
the distribution to model the possible values of 5.
To add superstatistics effects to the dynamics of
a given system, we first find the effective Boltzmann
factor. This is achieved by taking Eq. (3) and substi-
tuting it into Eq. (1). The integration over g leads to

B(H) = <1 + ;ﬁoﬁ)z. (7)

Note that, in the limit as N — oo, Eq. (7) becomes
the ordinary Boltzmann factor. For large, but finite
N, Eq. (7) can be expanded as

2
1+% (;)BSHZ ;(if) BEH3+ ...
(8)

Working up to first order in 1/N, Eq. (8) can be writ-
ten as [48]

B(H) = e P <1+ FH +> =

Bl

B(H)= e

N

B (oY
1+N<860> + ...

Therefore, the partition function to the first order in
1/N is given by

B (oY
1+N(aﬂo> + ...

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

ePoH (9)

7= Zo (10)

with
Zy = eV, (11)

where V and Ve are the system’s volume and effec-
tive potential, respectively. After a bit of a straight-
forward algebra, we write the expression for the par-
tition function in terms of Ty = 1/, as

B (oY
Z2=l1+2 (2 | z=
+N 9%, + 0
oy (92  To*Zo
=27y |1 — + — 12
0[ " NZ, (8T0 3 8T§>]’ (12)

and, therefore,

In[Z] = In[Zy] + In {1 + 2Ty <8ZO

NZ,

L T 0%
oT, = 2 012 )]

(13)

To explore the QCD phase diagram from the point
of view of chiral symmetry restoration, we use an ef-
fective model that accounts for the physics of sponta-
neous symmetry breaking at finite temperature and
density: the linear sigma model. In order to account
for the fermion degrees of freedom around the phase
transition, we also include quarks in this model and
work with the linear sigma model with quarks. The
Lagrangian in the case where only the two lightest
quark flavors are included is given by

2

L= 5(0,0) + 50, + S (0> + 1) +

F2(0% 4 722 4 iy 00 — gl + i mNE, (1)
where 9 is an SU(2) isospin doublet, 7w = (1, 72, 73)
is an isospin triplet, ¢ is an isospin singlet, X is the
boson’s self-coupling, g is the fermion-boson coupling,
and a? > 0 is the squared mass parameter.

To allow for an spontaneous symmetry breaking,
we let the o field develop a vacuum expectation

value v
o— o+, (15)

which serves as the order parameter to identify the
phase transitions. After this shift, the Lagrangian can
be rewritten as

L= %(8“0)2 - % (3\? —a®) 0® +
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+ 1(8 m)? — 1 (M? —a®) 7® + ajv2 +
24 2 2
A _ _ .
- ZU4 + Wy O — gupyp + EZI) + E}‘7 (16)

where the sigma, three pions, and the quarks have
masses given by

m?2 = 3 ? — a2,
m2 = \? — a?, (17)
mf - g'U,
respectively, and £% and £f are given by
A
rr — (g2 2\2
1=yl ) (18)

L] = —gi(o +ivsT TN,

Equation (18) describes the interactions among the
o, w, and v fields after the symmetry breaking.

In order to analyze the chiral symmetry restora-
tion, we compute the effective potential at finite tem-
perature and density. In order to account for plasma
screening effects, we also work up to the contribu-
tion of ring diagrams. All matter terms are computed
in the high-temperature approximation. The effective
potential is given by [20]

(a2+2502)vz (A+46A>v4+

n (- L1
61r2 "\arrg) T E T

_(mi+ H(To,uq>>3/2To} .

VEH(,Ua T07 ,uq) = -

+Zﬂ{

24 2
=T, m?T,
. 0 b0

90 24 127
m4
f -
R AHEOREE
f=u,d

0 iy o1 ip
—v < 27r%> —v <2 - 271'%0)

—8m§T02{L12( eta/To) 4+ Liy(—e Mq/To)}_’_

+ 32T [Li4(—e“«/T°) + Lig(—e~Ha/ TO)}}, (19)

where p, is the quark chemical potential, and da?
and d\ represent the counterterms which ensure that
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the one-loop vacuum corrections do not shift the po-
sition of the minimum or the vacuum mass of the
sigma. These counterterms are given by

S — o (8¢ — 1202 — 3A21n[2))
B 327\ ’ (20)
Sy (16 4 81n[g?/A])g* — (18 + 91n[2])\?
6472 '

The self-energy at finite temperature and quark
chemical potential, II(T, 1), includes the contribu-
tion from both bosons and fermions. In the high tem-
perature approximation, it is given by [20]

, T2
(T, ptq) = =Ny Neg” =2

—tq/To LCTOQ
e )} +
To implement superstatistics corrections, we substi-
tute Eq. (19) into Eq. (11). The partition function
is obtained from Eq. (12) and the effective potential
including superstatistics effects is obtained from the
logarithm of this partition function,

[Ll (—eta/To) 4

+ Lis(— (21)

Vilh = — g5 nl2)
As a consequence, the effective potential of Eq. (22)
has four free parameters. Three of them come from
the original model, namely, A\, g and a. The remain-
ing one corresponds to the superstatistics correction,
N. In the absence of superstatistics, the effective po-
tential in Eq. (19) allows for the second- and first-
order phase transitions, depending on the values of
A, g and a, as well as of Ty and p4. For given val-
ues of A, g, and a, we now proceed to analyze the
phase structure that emerges, when varying N, pay-
ing particular attention to the displacement of the
CEP location in the Tp, g plane.

The figure shows the effective QCD phase diagram
calculated with a = 133 MeV, g = 0.51, and A =0.36
for different values of the number of subsystems mak-
ing up the whole system, N. For the different curves,
the star shows the position of the CEP. Note that
this position moves to larger values of T" and lower
values of p,, with respect to the CEP position for
N = oo, that is, without superstatistics effects, as IV
decreases. Note also that, for these findings, we have
not considered fluctuations in the chemical poten-
tial. Those have been included to study the CEP po-
sition in the Nambu—Jona-Lasinio model in Ref. [53].

(22)
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Effects of Superstatistics on the Location

Our findings show that fermions become more rel-
evant for lower values of the baryon chemical poten-
tial, than they do in the case of the homogeneous sys-
tem. To picture this result, as above, let (u2, TY) and
(e, Te) be the critical values for the baryon chemical
potential and temperature at the onset of first-order
phase transitions for the homogeneous and fluctuat-
ing systems, respectively. The parameter that deter-
mines, when fermions become relevant, is the combi-
nation p/T?. Since our calculation for a single-boson
degrees of freedom shows that the critical tempera-
ture decreases with decreasing the number of subsys-
tems (see Ref. [50]), this means that, for the boson-
fermion fluctuating system, fermions become relevant
for pu./T. ~ ul/T? and, thus, for p. < p?.

To apply these considerations to the context of rel-
ativistic heavy-ion collisions, we recall that temper-
ature fluctuations are related to the system’s heat
capacity by
1-9 (T-T)?

= 2
= 7 (23)

where the factor (1 — &) accounts for deviations [54]
from the Gaussian [55] distribution for the random
variable T. The right-hand side of Eq. (23) can be
written in terms of fluctuations in S as

(T —To)?) (%)~ T3 _ B3~ (5% _

73 T3 (82)
82\ 52 2
() (8% - 8t
=Y 24
7 .
Note that, according to Eq. (6),
8\ Y
O — ~ —_
<<52‘>> - (1+2/N) ~1-4/N. (25)
Therefore, for N finite, but large,
(T-T0)*) _ (8% -5
w8 (26)
Using Egs. (6) and (26), we obtain
<(T — T0)2> _ z (27)

T2 N’
This means that the heat capacity is related to the
number of subsystems by

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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Effective QCD phase diagram calculated with a = 133 MeV,
g = 0.51, and A = 0.36 for different values of N. The star shows
the position of the CEP which moves toward larger values of
T and lower values of pq, as N decreases

To introduce the specific heat ¢, for a relativistic
heavy-ion collision, it is natural to divide C,, by the
number of participants IV, in the reaction. Therefore,
Eq. (28) can be written as

2 _(1-9

i . 29
N Npc, (29)

In Ref. [54], € is estimated as £ = N,/A, where A
is the smallest mass number of the colliding nuclei.
Equation (29) provides the link between the num-
ber of subsystems in a general superstatistics frame-
work and a relativistic heavy-ion collision. It has been
shown [56] that, at least for Gaussian fluctuations, ¢,
is a function of the collision energy. Therefore, in or-
der to make a thorough exploration of the phase dia-
gram, as the collision energy changes, we need to ac-
count for this dependence, as well as to work with val-
ues of the model parameters A, g, and a, appropriate
to the description of the QCD phase transition. Work
along these lines is currently underway and will be re-
ported elsewhere.
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BIL/IVIB CYIIEPCTATUCTUKU
HA ITOJIOXKEHHYA KPUTUYHOT KIHITEBOI
TOYKHN B EOEKTUBHIN KX/

PeszwwMme

B pamkax edexruBrol Mozemi dhazosol miarpamu KX /I posris-
JIA€ThCsl BIUIMB YaCTKOBOI TepMaJi3allil Imiji Jac BiTHOBJIEHHS
KipaJIbHOI CUMeTpil IIpU CKiHYEHHUX TeMIepaTypi i XiMidyHOMy
THOTEeHI[iaJi KBapKiB Ha IOJIO?KEHHSI KPUTUIHOI KiHI[€BOI TOYKH.
Mu nokaszasu, mo 11 edeKTH CIPUIUHAIOTD 3MIIIEHH KPUTH-
9HOI TOYKM B OiK OLIBIIMX TeMIEepaTyp Ta MEHIINX 3HaYeHb
XiMIiYHOrO IHOTEHIia/JIy KBapKiB IO BiJHOIIEHHIO O IOBHICTIO
TepMaJiizoBaHol cucremu. Lli edekTrn MOXKYTh OYTH BarKJIUBU-
MU JijIs1 3iTKHEHb PeJIATUBICTCHKHUX BaXKKHUX 10OHIB, Jie¢ {UHCJIO
mijicucTeM, 10 3alOBHIOIOTH BECh 00’€M, MOXKHA IIOB’S3aTH 31
CKIHYEHHMM YHCJIOM YaCTUHOK B PEaKIil.

671



S. Catto, Y. Gircan, A. Khalfan et al.

https://doi.org/10.15407 /ujpe64.8.672

S. CATTO,“? Y. GURCAN,? A. KHALFAN,* L. KURT,? B. NICOLESCU,® E. YU®

1 CUNY Graduate School and University Center
(365, Fifth Avenue, New York, NY 10016-4309; e-mail: scatto@gc.cuny.edu)

2 The Rockefeller University

(1230, York Avenue, New York, NY10021-6399)
3 Department of Science, Borough of Manhattan CC
(The City University of New York, NY 10007)

4 Physics Department, LaGuardia CC

(The City University of New York, NY 11101)
5 Baruch College, City University of New York
(17, Lezington Ave, New York, NY 10010)

HADRONIC SUPERSYMMETRY FROM QCD

The evolution of hadronic mass formulae with special emphasis on group theoretical descrip-
tions and supersymmetry suggested by QCD and based on quark-antidiquark symmetry is
shown, with further comments on possible applications to a Skyrme-type models that may
compete with the potential quark models in the future.

Keywords: supersymmetry, quark models, skyrmions.

1. Introduction

The quark model with potentials derived from
QCD, including the quark-diquark model for excited
hadrons gives mass formulae in a very good agree-
ment with experiments and goes a long way in ex-
plaining the approximate symmetries and supersym-
metries of the hadronic spectrum, including the sym-
metry breaking mechanism.

The mathematical expression of supersymmetry
arises through a generalization of Lie algebras to su-
peralgebras. When a Lie algebra is su(n) it can be
extended to a graded algebra (superalgebra) su(n/m)
with even and odd generators, the even genera-
tors being paired with commuting (bosonic) param-
eters and the odd generator with the Grassmann
(fermionic) parameters. The algebra can then be ex-
ponentiated to the supergroup SU(n/m). This was
done by Miyazawa [1] who derived the correct com-
mutation and anticommutation relations for such a
superalgebra, as well as the generalized Jacobi iden-
tity. This discovery predates the supersymmetry in
dual resonance models or supersymmetry in quan-
tum field theories invariant under the super-Poincaré
group that generalizes special relativity. Miyazawa
looked for a supergroup that would contain SU(6)
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and settled on broken SU(6/21). He showed that an
SU(3) singlet-octet of this supergroup leads to a new
kind of mass formulae relating fermionic and bosonic
mass splittings.

2. Quark-Diquark Model

We shall first discuss the validity domain of SU(6,/21)
supersymmetry [2, 3, 6]. The diquark structure with
spins s = 0 and s = 1 emerges in inelastic inclusive
lepton-baryon collisions with high impact parameters
that excite the baryon rotationally, resulting in in-
elastic structure functions based on point-like quarks
and diquarks instead of three point-like quarks. In
this case, both mesons and baryons are bilocal with
large separation of constituents.

In addition, there is a symmetry between color an-
titriplet diquarks with s = 0 and s = 1 and color an-
titriplet antiquarks with s = % This is only possible,
if the force between quark ¢ and antiquark ¢, and be-
tween ¢ and diquark D is mediated by a zero spin ob-
ject that sees no difference between the spins of § and
D. The object can be in color states that are either
singlet or octet since ¢ and D are both triplets. Such
an object is provided by scalar flux tubes of gluons
that dominate over the one gluon exchange at large
distances. Various strong coupling approximations
to QCD, like lattice gauge theory [4, 5], 't Hooft’s %
approximation [7], when N, the number of colors, is

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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very large, or the elongated bag model [8] all give a
linear potential between widely separated quarks and
an effective string that approximates the gluon flux
tube. In such a theory, it is energetically favorable for
the three quarks in a baryon to form a linear structure
with a quark in the middle and two at the ends or, for
a high rotational excitation, a bilocal linear structure
(diquark) at one end and a quark at the other end. In
order to illustrate these points, we start with the sug-
gestion of Johnson and Thorn [8] that the string-like
hadrons may be pictured as the vortices of color flux
lines which terminate on the concentration of color
at the end points. The color flux connecting opposite
ends is the same for mesons and baryons giving an
explanation for the same slope of meson and baryon
trajectories [3].

To construct a solution, which yields a maximal
angular momentum for a fixed mass, we consider a
bag with elongated shape rotating about the center
of mass with an angular frequency w. Its ends have
the maximal velocity allowed, which is the speed of
light (¢ = 1). Thus, a given point inside the bag, at
a distance r from the axis of rotation moves with a
velocity

2
v:|w><r\=fr, (1)

where L is the length of the string. In this picture,
the bag surface will be fixed by balancing the gluon
field pressure against the confining vacuum pressure
B, which (in analogy to electrodynamics) can be writ-
ten in the form

138
2
52 (E
a=1
Using Gauss’ law, the color electric field E through

the flux tube connecting the color charges at the ends
of the string is given by

- B)=B. (2)

/Ea dS = E, A= g%)\aa (3)

where A(r) is the cross-section of the flux tube at
distance r from the center and g%)\a is the color
electric charge, which is the source of E,. By anal-
ogy with classical electrodynamics, the color mag-
netic field B, (r) associated with the rotation of the
color electric field is

= v(r) x Eq(r), (4)
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B.(r)

at a point moving with a velocity v(r). For the abso-
lute values, this yields

Ba =0 EOL7 (5)

because v(r) is perpendicular to E,(r). Using last

three equations together with

(50

a=1

for the SU(3)¢ triplet in Eq. (2), we obtain that the
cross-section of the bag

2

Ar) = 3B g

1— 2, (7)

which shows the expected Lorentz contraction.
The total energy E of the bag

E=E,+Eq+ BV (8)

is the sum of the quark energy E,, the gluon field en-
ergy E¢, and the volume energy of the bag, BV . Be-
cause the quarks at the ends move with the a speed
close to the speed of light, their energy is simply
given by

Eq = 2p, (9)

where p is the momentum of a quark, a diquark, or
an antiquark, respectively. By analogy with electro-
dynamics, Eqgs. (3)—(5) yield

8

/d3 ZE§+B§):

\[fL?”T (10)

1
= \/gg\/EL
0

for the gluon energy and

1—|—v

NSl

BV = 2B/A(r) dr =

0
1
2 L
=2B [ /== gV1— 022 dv =
/ 3Bg v2dv
0

2 7  BA(0)Lw
— /2 gvBLE = 220ET
\/;gf 1 1
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for the volume energy. It is obvious from Eq. (10) that
the gluon field energy is proportional to the length L
of the bag. The gluon field energy and the volume en-
ergy of the bag together correspond to a linear rising
potential of the form

V(L) =Eg+ BV =bL, (12)
where

2B
b= — g (13)

The total angular momentum J of this classical bag
is the sum of the angular momenta of the quarks at
the two ends
Jy=pL (14)

and the angular momentum Jg of the gluon field.
From Eq. (4), we get

E, xB, = VEi; (15)

for the momentum of the gluon field. Hence,

8
Z (Eq X By)| =

bag

2
16
= E2 2
/ rrv 3L
0

\h

\ffLﬂ

(16)

where we have used Eq. (1) and Eq. (3) in the third
step. We can now express the total energy of the bag
in terms of angular momenta. Putting these results
back into the formulae for £, and Eg, we arrive at
2Jq 3Ja

Eq=-71 Be="7"

-, (a7)

so that the bag energy now becomes

2B«
V= 3 Lot =
+ gL

L L
20, +4Jde 2(J+ JG) _

L L

1 2 s
==12 Z gvVBL?*=|.
L(‘”\/;g 2)
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oo, 3a

(18)

Minimizing the total energy for a fixed angular mo-

mentum with respect to the length of the bag, & 6—E =0
gives the relation
J 2
— 4 \[ gVBE =0 (19)
3 2
so that
4J
L= 24/ =. 2
Re-inserting this into Eq. (18), we arrive at
2B\¢
or
Y YR
2B 4mg
3 1 1
=\/==—= E? = o/ (0)M? 22

where M = FE, and oy = % is the unrationalized
color gluon coupling constant. We can now let o/(0)
defined by the last equation, which is the slope of the

Regge trajectory, be expressed as

31 1 1
0) =4/ — —_ ——
O =\ T/

where b was defined in Eq. (12).

The parameters B and ay have been determined
[9, 10] using the experimental information from the
low lying hadron states: Bi = 0.146 GeV and oy =
= 0.55 GeV. If we use these values in Eq. (23), we
find

(23)

a’(0) = 0.88 (GeV)~? (24)
in the remarkable agreement with the slope de-
termined from experimental data, which is about

9 (GeV)~2

Then the total phenomenological non-relativistic
potential is the well-known superposition of the
Coulomb-like and confining potentials V' (r) = % +br,
where r = |r; — ro| is the distance between ¢ and g in
a meson or between ¢ and D in a baryon with high
angular momentum. This was verified in lattice QCD
to a high degree of accuracy [11] (a = =5%<, where
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c is the color factor, and «. is the strong coupling
strength).

It is interesting to know that all this is related very
closely to the dual strings. Indeed, we can show that
the slope given in Eq. (23) is equivalent to the dual
string model formula for the slope, if we associate the
“proper tension” in the string with the proper energy
per unit length of the color flux tube and the vol-
ume. By the proper energy per unit length, we mean
the energy per unit length at a point in the bag eval-
uated in the rest system of that point. This will be

1
To=3 Z E%Aq + BA,. (25)

The relation % >, E2 = B in the rest system gives
Th = 2BA,, (26)

where Ay is the cross-sectional area of the bag. Let
A= Apin Eq. (7), when v = 0. Then, using

[2
AO = 3§gv (27)
we find
T0:2\/§g\/§=4\/2;\/@\/§ (28)

for the proper tension. In the dual string, the slope
and the proper tension are related by the formula [12]

1

o= 5rar (29)
so that the slope is
1 /31 1 1
=2 (30)

8 V2x3 a, VB
which is identical to the earlier formula we produced
in Eq. (23).

It would appear from Eq. (28) that the ratio of
volume to field energy would be one-to-one in one
space dimension in contrast to the result one-to-three,
which holds for a three-dimensional bag [13]. Howe-
ver, the ratio one-to-one is true only in the rest system
at a point in the bag, and each position along the x-
axis is, of course, moving with a different velocity. In-
deed, we see from Eq. (10) and Eq. (11) that the ratio
of the total volume energy to the total field energy is
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given by one-to-three in conformity with the virial
theorem [13].

In the string model of hadrons, we have E? ~ .J
between the energy and the angular momentum of
the rotating string. If we denote, by p(r), the mass
density of a string, and, by v and w, its linear and
angular velocities, respectively, the energy and the
angular momentum of the rotating string are given by

0
and
1
e 2/\/%7”2“‘” =z / \/%vﬂdv.
0
Hence, the relation (32)
v (33)

holds. If the string is loaded with mass points at its
ends, they no longer move with the speed of light. Ho-
wever, the above relation still holds approximately for
the total energy and angular momentum of the loaded
string.

We now look at various ways of the partitioning of
the total angular momentum into two subsystems. Fi-
gures a, b, and ¢ show the possible configurations of
three quarks in a baryon. If we put the proportional-
ity constant in Eq. (33) equal to unity, then the naive
evaluation of energies yield
E*=J,+Jo=E?+E2<(E, +Ey)?=FE"? (34)
where F and E’ denote the energies corresponding
to Figures a or c. In the case of Figure b, J; and Jo
are the angular momenta corresponding to the ener-
gies F1 and Fs of the subsystems. The equality in
Eq. (34) holds, only if E; or Es is zero. Therefore,
for each fixed total angular momentum, its most un-
fair partition into two subsystems gives us the lowest
energy levels, and its more or less fair partition gives
rise to energy levels on daughter trajectories. Hence,
on the leading baryonic trajectory, we have a quark-
diquark structure (Fig. a) or a linear molecule struc-
ture (Fig. ¢). On the other hand, on low-lying tra-
jectories, we have more or less symmetric (J; ~ J3)
configuration of quarks.
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q3

J=J1+J>

q1 e o (2

q3
IJzO
J=J1+Js

[

q1 e

° (2

Since the high-J hadronic states on leading Regge
trajectories tend to be bilocal with large separation
of their constituents, they fulfill all the conditions for
supersymmetry between ¢ and D. Then the only dif-
ference between the energies of (¢g) mesons and (¢D)
baryons comes from the different masses of their con-
stituents, namely, m, = mg = m, and mp ~ 2m. For
high J, this is the main source of symmetry break-
ing, which is spin-independent. We will show how we
can obtain sum rules from this breaking. The part
of the mass operator that gives rise to this split-
ting is a diagonal element of U(6/21) that commutes
with SU(6).

Let us now consider the spin-dependent breaking of
SU(6/21). For low J states, the (¢D) system becomes
trilocal(gqq), and the flux tube degenerates to a sin-
gle gluon propagator that gives spin-dependent forces
in addition to the Coulomb term . In this case, we
have the regime studied by de Rujula, Georgi, and
Glashow, where the breaking is due to the hyperfine
splitting caused by the exchange of single gluons that
have spin 1. These mass splittings give rise to differ-
ent intercepts of the Regge trajectories given by

519 4 _ o),

m1m2’

Amlz =k

(35)
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both for baryons and mesons at high energies. But,
at low energies, the baryon becomes a trilocal object
(with three quarks), and the mass splitting is given

by
S5 S
L 5Ss 1>7
mamm;y

1
Amigz = 279 (
where my, ms, and ms are the masses of the three
different quark constituents.

The element of SU(6/21) that gives rise to such
splittings is a diagonal element of its U(21) subgroup
and gives rise to s(s + 1) terms that behave like an
element of the (405) representation of SU(6) in the
SU(6) mass formulae. The splitting of isospin multi-
plets is due to a symmetry breaking element in the
(35) representation of SU(6). Hence, all symmetry
breaking terms are in the adjoint representation of
SU(6/21). If we restrict ourselves to the non-strange
sector of hadrons with approximate SU(4) symmetry,
the effective supersymmetry will relate the splitting in
m? between A (s=2T=23) and N (s=1%,1=1)
to the splitting between w (s = 1,I = 0) and =«
(s =0,I=1), so that

S18S2
mimsa

S, 83
mains

(36)

2 2 _ 2 2
ma — My =My, — Mg,

(37)
which is satisfied to within 5%. Our potential model
gives a more accurate symmetry breaking

9, 9 2

g(mA —my)=m

2 2
w My

(38)

to within 1%, where the § arises from 1(3a,)? =

2
= %aﬁ. For a classification of supergroups including

SU(m/n), we refer to the paper by Viktor Kac [14].

3. Conclusions and Future Prospects

Effective Hamiltonians and new mass relations in-
cluding quark and diquark masses were worked out
in our previous works that included the complete
understanding of hadronic color algebras as well. In
the case of heavy quarks, one can also use the non-
relativistic approximation, so that the potential mod-
els for the spectrum of charmonium and the bb sys-
tem can be worked out. In such an approach, gluons
can be eliminated leaving quarks interacting through
potentials.

It is also possible to take an opposite approach by
eliminating quarks as well as gluons, leaving only an
effective theory that involves mesons and baryons as

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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collective excitations (solitons) in a way by Skyrme. A
Skyrme model that can compete with the potential
model is not yet realized.

It is a pleasure to acknowledge helpful conversa-
tions with Professors Viadimir Akulov, Cestmir Bur-
dik, and Francesco Iachello.
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FAJIPOHHA CYIIEPCUMETPIA 3 KX/
PeswwMme

3ampornoHoBaHO MoAUdIKaIliI0 MACOBUX (POPMYJI JJIsi TAIPOHIB,
3 HaroJIOCOM Ha TEOPETUKO-TPYIOBHUil OIHC i cyliepcuMerpilo,
saka Bignosimae KX/I i 6a3yerbcs Ha KBapK-aHTUKBAPKOBIiil cu-
MeTpil, i3 MoJAIBIINMU KOMEHTAPAMU 00 MOXKJIMBUX 3aCTO-
cyBaHb 110 MoJjiesieit Tuiry Ckipma, siKi B Maiitby THbOMY MOXKYTb
KOHKYPYBATH 3 IOTEHI[iaJIbHUMI KBAPDKOBUMHU MOJEJISIMU.

677



V.S. Fadin

https://doi.org/10.15407 /ujpe64.8.678

V.S. FADIN':?

1 G.1. Budker Institute of Nuclear Physics of SD RAS
(630090 Novosibirsk Russia; e-mail: fadin@inp.nsk.su)

2 Novosibirsk State University

(630090 Novosibirsk, Russia; e-mail: fadin@inp.nsk.su)

REGGE CUTS AND NNLLA BFKL

In the leading and next-to-leading logarithmic approximations, QCD amplitudes with gluon
quantum numbers in cross-channels and negative signature have the pole form corresponding
to a reggeized gluon. The famous BFKL equation was derived using this form. In the next-to-
next-to-leading approzimation (NNLLA), the pole form is violated by contributions of Regge
cuts. We discuss these contributions and their impact on the derivation of the BFKL equation

in the NNLLA.

Keywords: gluon Reggeization, BFKL equation, Regge cuts.

1. Introduction

The equation, which is called now BFKL (Balitskii—
Fadin-Kuraev-Lipatov), was first derived in non-
Abelian gauge theories with spontaneously broken
symmetry [1-3]. Then its applicability to QCD was
shown in [4]. The derivation of the equation was based
on the Reggeization of gauge bosons in non-Abelian
gauge theories (gluons in QCD). The Reggeization
determines the high-energy behavior of cross-sections
non-decreasing, as the energy increases. In the Regge
and multi-Regge kinematics in each order of pertur-
bation theory, dominant (having the largest Ins de-
grees) are the amplitudes with gluon quantum num-
bers and negative signatures in cross-channels. They
determine the s-channel discontinuites of ampli-
tudes with the same and all other possible quantum
numbers.

It is extremely important that, both in the leading
logarithmic approximation (LLA) and in the next-
to-leading one (NLLA), the amplitudes used in the
unitarity relations are determined by the Regge pole
contributions and have a simple factorized form (pole
Regge form). Due to this, the Reggeization provides
a simple derivation of the BFKL equation in the LLA
and in the NLLA. The s-channel discontinuities are
presented by Fig. 1 and symbolically can be written
as Pay ® G ® ®ppg, where the impact factors
® 44 and ® g/ describe the transitions A — A’ and
B — B’, G is Green’s function for two interacting

© V.S. FADIN, 2019
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Reggeized gluons, G = e¥X, ¥ =1In(s/s¢), K is the
universal (process-independent) BFKL kernel, which
determines the energy dependence of scattering am-
plitudes and is expressed through the gluon trajectory
and the Reggeon vertices. Validity of the pole Regge
form is proved now in all orders of perturbation the-
ory in the coupling constant g both in the LLA [5],
and in the NLLA (see [6, 7] and references therein).

The first observation of the violation of the pole
Regge form was done [8] in the high-energy limit of
the results of direct two-loop calculations of the two-
loop amplitudes for gg, gq, and gq scattering. Then
the terms breaking the pole Regge form in two- and
three-loop amplitudes of the elastic scattering were
found in [9-11] using the techniques of infrared fac-
torization.

It is worth to say that, in general, the breaking
of the pole Regge form is not a surprise. It is well
known that Regge poles in the complex angular mo-
menta plane generate Regge cuts. Moreover, in am-
plitudes with positive signature, the Regge cuts ap-
pear already in the LLA. In particular, the BFKL
Pomeron is the two-Reggeon cut in the complex an-
gular momenta plane. But, in amplitudes with neg-
ative signature due to the signature conservation, a
cut must be at least three-Reggeon one and can ap-
pear only in the NNLLA. It is natural to expect that
the observed violation of the pole Regge form can be
explained by their contributions.

Indeed, all known cases of breaking the pole Regge
form are now explained by the three-Reggeon cuts
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[12, 13]. Unfortunately, the approaches used and the
explanations given in these papers are different.
Their results coincide in the three-loop approach,
but may diverge for more loops. It requires a further
investigation.

Here, we consider the contributions of a three-
Reggeon cut to the amplitudes of elastic scattering
of partons (quarks and gluons) with negative signa-
ture up to four loops.

2. Three-Reggeon Cut

Since our Reggeon is the Reggeized gluon, the three-
Reggeon cut first contributes to the amplitudes corre-
sponding to the diagrams shown in Fig. 2. In contrast
to the Reggeon which contribute only to amplitudes
with the adjoint representation of the color group
(color octet in QCD) in the ¢-channel, the cut can
contribute to various representations. Possible repre-
sentations for the quark-quark and quark-gluon scat-
terings are only singlet (1) and octet (8), whereas,
for the gluon-gluon scattering, there are also 10, 10*,
and 27. The account for the Bose statistics for glu-
ons, symmetry of the representations 1 and 27, an-
tisymmetry 10 and 10*, and the existence of both
symmetric 85 and antisymmetric 8, representations
for them, gives that, in addition to the Reggeon chan-
nel, the amplitudes with negative signature are in the
representations 1 for the quark-quark-scattering and
in the representation 10 and 10* for the gluon gluon
scattering. The amplitude of the process AA 5" de-
picted by the diagrams in Fig. 2 can be written as
the sum over the permutations o of products of color
factors and color-independent matrix elements:

ATE =S (e s, 1)

o

where o and 8 (o and ') are the color indices of
an incoming (outgoing) projectile A and a target B,
respectively. We use the same letters for the quark
and gluon color indices; it should be remembered,
however, that there is no difference between upper
and lower indices (running from 1 to N2 — 1) for
gluons, whereas, for quarks, lower and upper indices
(running from 1 to N,) refer to mutually related rep-
resentations.

The color factors can be decomposed into irre-
ducible representations R of the color group in the

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

Fig. 1. Schematic representation of the s-channel discontinu-
ites of amplitudes A + B — A’ + B’

A A A A A
B B’ B B’ B B’
a b 4
A A A A

B B
d

Fig. 2. Feynman diagrams of the process A+ B — A’ + B’
with three-gluon exchanges

t-channel:

S, - S, Soms, @
R

where

[Phs10s =D [PE" 1w PE™ s, (3)

n

PR i5 the projection operator on the state n in the
representation R,

(0)o _ 1 1 ey ez’
PSS N
(T TETE) | PRs ] (4)

Npg is the dimension of the representation R, 7% are
the color group generators in the corresponding repre-

sentations, [T% T = ifapeT¢; (T4)% = —ifara for
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q

Fig. 3. Schematic representation of As(g, )

q q

q q
a b

Fig. 4. Schematic representation of A§(q ) and Ag (q1)

gluons and (7%)%, = (t%)*, for quarks; Tr(7;*T?) =
= Tybup, Ty = 1/2, T, = N...

In [12] the Reggeon channel (R=8) was consid-
ered. It was discovered that that the terms violating

the pole factorization in Q(S)Ef]); do not depend on

o (let us call them Q(S)EE}B), so that the momentum-
dependent factors for them are summed up to the
eikonal amplitude

Z M,SAO%U _ Aeik —

g

75 () a2 e o

where As(q,) ) is depicted by the diagram presented
in Fig. 3 and is written as

d2+251 d2+261

Az(q1) :/ 2(3+2 212 . 2° (6)
(2m)2B3+291 217 (g — 1 — 1)

Note that we use the “infrared” ¢, e = (D —4)/2, D

is the space-time dimension.

This result is very important, because the contri-
bution of the cut must be gauge-invariant, whereas

M%" taken separately are gauge-dependent.
In [14], other channels with possible cut contribu-
tions were considered. It was shown that, for them,
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0)o

the color coefficients G(R) 5 do not depend on o,

0 _ NZ-HWNZ-1)

9(Wgg = 16N3 ’
(7)

so that the momentum-dependent factors for them
are also summed up to the eikonal amplitude (5).

The separation of the pole and cut contributions
in the octet channel is impossible in the two-loop ap-
proximation, because of the ambiguity of the alloca-
tion of parts of the amplitudes violating the factor-
ization. The separation becomes possible for higher
loops, due to the different energy dependences of the
pole and cut contributions. The energy dependence of
the pole contribution is determined by the Regge fac-
tor of a Reggeized gluon exp(w(t)Ins), where w(t) is
the gluon trajectory, whereas, for the three-Reggeon
cut, it is

. -3
G(10+10)g) = —=Ne,

pl(@1+@2+@3+K(1,2) 4K (1,3)+K(2,3)) In 8] 7 (8)

where K,.(m,n) is the real part of the BFKL kernel
describing the interaction between Reggeons m and n.

The calculations of the first logarithmic correction
to the cut contribution in the octet channel was per-
formed in [12, 14, 15] and, in the other channels, in
[14]. In the latter case, the correction is

_ — 472
G(10+ 10)(0 ¢°2 (”) a2 ¢2N, x

t 3
1. 1,
x Ins —5143(%_) - 5143(%_) ) (9)
s [—Arn?
Gl 575 (S5 a o'

3 3

x Ins (SA3(qr) — S A3(qu) ),
2 2

and in the first case as

s [(—4m?
6(5)5) o3 (5 ) a? a2

x Ins (;Aéf(cu) - Ag((u)) (11)

where A%(q,) and A%(gyL) are depicted by the dia-
grams presented in Figs. 4, a and 4, b, respectively,
d2+2el1 d2+2el2d2+2613
Ag(QL):/ 3(3+26)] 2121 2 27
(2m)3B 29121212 (g — 1 — 1o — 13)
(12)
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AS(qu) =

_ / d2+2el1 d2+2el2d2+26l3(q _ l1)2

) @n)PERAIR (g — L — 1o)X (g - L — 1)
(13)

It was shown in [12, 14, 15] that the violation of
the pole Regge form, analyzed in this approxima-
tion in [9]-[11] with the help of the infrared factoriza-
tion, can be explained by the pole and cut contribu-
tions. In other words, the restrictions imposed by the
infrared factorization on the parton scattering am-
plitudes with the adjoint representation of the color
group in the t-channel and negative signature can be
fulfilled in the NNLLA with two and three loops, if,
in addition to the Regge pole contribution, there is
the Regge cut contribution. It should be noted that
this result is limited to three loops and cannot be
considered as a proof that, in the NNLLA, the only
singularities in the J plane are the Regge pole and the
three-Reggeon cut. Moreover, the explanation of the
violation of the pole Regge form given in [13] differs
from that described above. In this paper, in addition
to the cut with the vertex of interaction with particles
1 having the color structure

(O = (T3 &Y (FITATAT), ()

the Reggeon-cut mixing is introduced. Actually, in
the three-loop approximation, the mixing is not re-
quired.

Whether the mixing is necessary can be verified in
the four-loop approximation.

The four-loop calculations should answer the ques-
tions whether the existence of a pole and a cut is suf-
ficient in this approximation, with or without mixing.

In the four-loop approximation, there are three
types of corrections. The first (simplest) ones come
from the account for the Regge factors of each of three
Reggeons. The second type of the corrections is given
by the products of the trajectories and real parts of
the BFKL kernels, and the third one comes from the
account for Reggeon—Reggeon interactions. All types
of corrections are expressed through the integrals over
the transverse momentum space corresponding to the
diagrams in Fig. 5:

I- B / d2+2€ll d2+2€l2 d2+2€lg
o (2m)3(3 29121213

Fi0® T (q—-1; — 1o —13),
(15)
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a b C d e
Fig. 5. Four-loop diagrams

Fo=fill)f1(l2), Fy=fi(l)fi(ly), Fe=fo(li +12),

Fo=fi(li +12) fi(lh +12), Fo= fi(a—1)fi(q—13),

(16)
d2+25l
full) = k2/ (2m)G+2912(1 — k)2’
d2+25l 1
f2(k) = / (277)(3+2e)1];1((1 )_ k)2' (17)

These integrals enter the total four-loop correc-
tion with different color factors in the approaches
with or without Reggeon-cut mixing. The question of
whether the four-loop amplitudes of the elastic scat-
tering in QCD are given by the Regge pole and cut
contributions, with or without mixing, can be solved
by comparing these corrections with the result ob-
tained with the use of the infrared factorization.

3. Discussion

The gluon Reggeization is the basis of the BFKL
approach. The BFKL equation was derived assum-
ing the pole Regge form of amplitudes with gluon
quantum numbers in cross channels and negative sig-
nature. It is proved now in all orders of perturba-
tion theory that this form is valid both in the lead-
ing and in the next-to-leading logarithmic approxima-
tions. However, this form is violated in the NNLLA.
Currently, there are two evidences of the viola-
tion. First, it was discovered, using the results of di-
rect calculations of parton (gg,gq and g¢q) scatter-
ing amplitudes in the two-loop approximation, that
the non-logarithmic terms (the lowest terms of the
NNLLA) do not agree with the pole Regge form of
the amplitudes. Second, it was shown using the tech-
niques of infrared factorization that there are single-
logarithmic terms with three loops wihich can not be
attributed to the Regge pole contribution.
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It was shown that the observed violation can be
explained by the three-Reggeon cuts [12,13]. But the
assertion that the QCD amplitudes with gluon quan-
tum numbers in cross-channels and negative signa-
ture are given in the NNLLA by the contributions
of the Regge pole and the three-Reggeon cut is only
a hypotheses. Since there is no general proof of it,
it should be checked in each order of perturbation
theory. In addition, the approaches used and the ex-
planations given in [12] and [13] are different. Their
results coincide in the three-loop case but may diverge
for more loops.

The calculations of the cut contributions presented
here aim to prove this hypothesis in the four-loop
case. Unfortunately, direct calculations in that order
in the NNLLA do not exist, and there is no hope for
that they will be done in the foreseeable future. But it
seems possible to obtain the corresponding results us-
ing the infrared factorization. The comparison of the
results should answer the questions whether the exis-
tence of a pole and a cut is sufficient with or without
mixing.

Work supported in part by the Ministry of Science
and Higher Education of the Russian Federation, in
part by RFBR, grant 19-02-00690.
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PEJ>KEBCBKI PO3PI3N
I BFKL ¥V HABJIM>KEHHI NNLLA

Peszowme

YV royIoBHOMY Ta HACTYIIHOMY JIOrapU(PMiTHOMY HAOIHAKEHHIX
KX/I ammiiTy i 3 riIFOOHHEMYA KBAHTOBUMU YHCJIAMU B KPOC-
KaHaJI Ta BiJI’€MHOIO CUI'HATYPOIO MAIOTh IIOJIIOCHY (DOPMY, sIKa
BIANIOBiZa€ pemKe30BAHOMY TUIIOOHY. 3a JOMOMOromw miel dhop-
MH BUBOAUTHCA 3HaMeHnTe piBHsanHa BFKL. B nabamkenni
NNLLA momocaa ¢popmMa MOPYIIeHA BHECKAMHU PEIKEBCHKUX
po3piziB. Mu 06roBoproeMo 11i BHECKH Ta 1X BILJIMB Ha OTPUMAH-
us piBasinHs BFKL y nabnuxenni NNLLA.
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BLACK HOLE TORSION EFFECT
AND ITS RELATION TO INFORMATION

In order to study the effects of the torsion on the gravitation in space-time and its relation
to information, we use the Schwarzschild metric, where the torsion is naturally introduced
through the spin particle density. In the black hole scenario, we derive an analytic solution
for the black hole gravitational radius with the spin included. Then we calculate its entropy
in the cases of parallel and antiparallel spins. Moreover, four analytical solutions for the spin
density as a function of the number of information are found. Using these solutions in the case
of parallel spin, we obtain expressions for the Ricci scalar as a function of the information
number N, and the cosmological constant \ is also revealed.

Keywords: gravitation, quantization, torsion, spin, black holes.

1. Introduction

A natural way to talk about spin effects in grav-
itation is through torsion. Its introduction becomes
significant for the understanding of the last stage in
the black hole evaporation. It could be the case of an
evaporating black hole of mass My that disappears
via an explosion burst, which can last for the time
t, = 107 s, when it reaches a mass of the order of
Planck’s mass

my = 1/% =10""s. (1)

If this happens, there might be three distinct possi-
bilities for the fate of the evaporating black hole [3]:
The black hole may evaporate completely leaving no
residue, in which case it would give rise to a serious
problem of quantum consistency. If the final state of
evaporation leaves a naked singularity behind, then it
might violate the cosmic censorship at the quantum
level. If a stable remnant of the residue with approx-
imately Planck’s mass remains, the emission process
might stop.

If somebody tries to quantize the gravitational
field, he must know that the quantization has to be
directed with the unique structure of the space-time
itself. The quantization will also imply that some-
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body might try to discretize the space and, proba-
bly, the time. Progress in this direction will also be
related to the introduction of a spin in the theory
of general relativity. The general relativity (GR) is
the simplest theory of gravity which agrees with all
present-day data. A major recent success is the de-
tection of the lensed emission near the event hori-
zon in the center of M-87 supergiant elliptic galaxy
in the constellation Virgo. All the data obtained are
consistent with the presence of a central Kerr black
hole, as predicted by the general theory of relativ-
ity [1]. Somebody might want to formulate a general-
ized theory of general relativity to compare GR with
various theories that explain other physical interac-
tions. As an example, we say that the electromagnetic
forces, strong interactions, and weak interactions are
described with the help of quantum relativistic fields
interacting in a flat Minkowski space. Furthermore,
the fields that represent the interactions are defined
over the space-time. But, at the same time, they are
distinguished from the space-time which, we must
say, is not affected by them. On the other hand, the
gravitational interactions can modify the space-time
geometry, but they are not represented by a new
field. They are just represented by their effect on
the geometry of the space itself. Thus, we can say
that most parts of the modern physics are successful
in being described in a flat rigid space-time geome-
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try. But a small fraction of the remaining physics, i.e.,
macroscopic gravitational physics, requires the use of
a curved dynamical geometric background. To over-
come this difficulty, somebody might try to extend
the geometric principles of GR into microphysics in
order to establish a direct comparison and possibly
some connection between gravity and other interac-
tions. In GR theory, the matter is represented by the
energy-momentum tensor, which essentially gives de-
scription of the mass density distribution in space-
time. Therefore, the idea of mass-energy in GR is
enough to define the properties of classical macro-
scopic bodies.

Looking at the microscopic level, we know that
the matter is composed of elementary particles that
obey the laws of special relativity and quantum me-
chanics. Each particle is characterized not only by its
mass, but also by a spin measured in units of &. At the
microscopic level, the mass and the spin are two inde-
pendent quantities. The mass distributions in space-
time are described by the energy-momentum tensor,
whereas the spin distribution is described, in field the-
ory, by the spin density tensor. Inside any microscopic
body, the spins of elementary particles are, in gen-
eral, randomly oriented with the total average spin
equal to zero. Therefore, the spin density tensor of
a macroscopic body is zero. This explains why the
energy-momentum tensor is adequate to dynamically
characterize a macroscopic matter. Thus, the gravita-
tional interactions can be sufficiently described by the
Riemannian geometry. Another point that should be
stressed is that the spin density tensor represents the
intrinsic angular momentum of particles, and not the
classical orbital angular momentum due to the macro-
scopic rotation. A fundamental difference is that the
latter can be eliminated by an appropriate coordinate
transformation. On the other hand, the spin density
can be eliminated at a point only. The spin density
tensor is a non-vanishing quantity, if the spins in-
side a body are oriented at least partially along a
preferred direction and, at the same time, are not af-
fected by the rotation of the macroscopic body. At
the macroscopic level, the energy-momentum tensor
is not enough to characterize the dynamics of the mat-
ter sources, because the spin density tensor is also
needed, unless we are considering scalar fields that
correspond to spineless particles. In the case where
GR must be extended to include microphysics, the
matter must be considered and described, by using
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the mass and the spin density. On the other hand,
the mass is related to a curvature in a generalized
theory of GR, and the spin should be related to the
spin density tensor or, probably, to a different prop-
erty of the space-time. The geometric property of the
space-time in relation to spin in the U4 theory is the
torsion.

The torsion, thus, can be described by the anti-
symmetric part of Christoffel symbols of the second
kind. Therefore, the torsion tensor reads [5]:

1

Ql,j,\ 9 (Fﬁ/\ - Fiu) = Fﬁ»\]' (2)
The torsion is characterized by a third-rank tensor
that is antisymmetric in the first two indices and
has 24 independent components. If the torsion does
not vanish, the affine connection is not coincident
with the Christoffel connection. Therefore, the geom-
etry is not any longer the Riemannian, but rather
Riemann—Cartan space-time with a non-symmetric
connection. To introduce the torsion simply repre-
sents a very natural way of modifying GR. The rela-
tion of the torsion and the spin allows one to modify
the GR theory and Riemannian geometry resulting in
a more natural and complete description of the matter
at the microscopical level as well. Finally, the early
Universe is the place, where GR must be applied to-
gether with quantum theory. On the other hand, GR
is a classical field theory. So far, the quantization of
the gravity has been a problem in our effort to develop
a consistent and coherent theory in understanding the
physics of the early Universe.

In the presence of a torsion, the space-time is
called a Riemann—Cartan manifold and is denoted by
U4. When the torsion is taken into consideration, one
can define distances in the following way. Supposing
that we consider a small close circuit, we can write
[5] the non-closure property given by the integral:

"= ?{Ql‘/‘)\dx” Adzt # 0, (3)

where dx”dx" is the area element enclosed by the
loop, t* represents the so-called closure failure, and
the torsion tensor @', is a true tensorial quantity. In
other words, the geometric meaning of the torsion can
be represented by the failure of the loop closure. It
has now the dimension of length, andn the torsion
tensor itself has the dimension of L=! .
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2. Quantum Gravity and Torsion

The inclusion of the torsion into GR might constitute
a way to the quantization of gravity, by considering
the effect of the spin and connecting the torsion to
the defects in the topology of space-time. For that,
we can define a minimal unit of length [, as well as a
minimal unit of time ¢. In GR and quantum field the-
ory, there are now, indeed, difficulties due to the exis-
tence of infinities and singularities. One of the reasons
is the consideration of point mass particles, which re-
sults in the divergence of the energy integrals going
to infinity. In the case of collapsing bodies in GR,
we have singularities. All these difficulties can disap-
pear, if, together with the introduction of a torsion,
we introduce the minimal time and length or, in other
words, if we consider a discretized space-time. If we
want to quantize the gravity, we cannot exactly fol-
low the same procedure of quantization used in other
fields. Indeed, the gravity is not a force, but the cur-
vature and torsion of the space-time. The inclusion of
the torsion in the space-time gives rise to space-time
topology defects. The problem may be avoided, if
the torsion is included. In this case, the asymmetric
part of the connection Fff, A OF; in other words, the
torsion tensor @, is a true tensorial quantity. Since
the torsion is related to the intrinsic spin, we see that
the intrinsic spin A and, hence, the spin are quan-
tized. We can conclude that the space-time defect in
topology should occur in multiples of Planck’s length

l, = \/g In other words, we can write [5]

%Q%\dw” Adz® =ny Z—?n”, 4)

where n is an integer, and n* is a unit point
vector. This is a relation analogous to the Bohr—
Sommerfeld relation in quantum mechanics. The tor-
sion tensor @Y, plays the role of a field strength,
which is analogous to that of the electromagnetic field
tensor F),,,. Equation (4) defines the minimal funda-
mental length, a minimal length that enters the pic-
ture through the unit of action A. In other words, A
represents the intrinsic defect that is built in the tor-
sion structure of space-time, in quantized units of
related to a quantized time like-vector with the di-
mension of length. This vector is related to the intrin-
sic geometric structure, when the torsion is consid-
ered. The intrinsic spin in units of & characterizes all
the matter, and, therefore, the torsion is now enter-
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ing the geometry. Thus, the Einstein—Cartan theory
of gravitation can provide the corresponding quan-
tum gravity effects. At the same time, we can also
define the time at the quantum geometric level again
through the torsion according to the equation:

1 N e
t:E%QﬁAdx ANdz* =n 5 (5)

So, when the torsion is included, it is important that
a minimal time interval given by Eq. (5) exists and is
different from zero. This is the smallest unit of time
t, = 5.391 X 107** 5. In the limit as B — 0, we
recover the classical geometry of GR and, if ¢ — oo,
the Newtonian case. Finally, the geodesic equations
in the case of a nonzero spin turn to

d?zt " d:cil‘dx”
dp2 " dp dp

p da¥ dzt
“Adp dp’

=-2Q (6)
where p is an affine parameter. To understand the
spin effects in gravitation, we can use the torsion.
Consequently, let us first write a Schwarzschild metric
that includes torsion effects [4]:

2GM  3G?s?
bl E A A
c2r 27"406)

ds? = ¢ (1 —

2 .2\"1
_ (1 _ 2571\/‘[ 3;11;) dr® — r? (d6* + sin® 0d¢?),
(7)

where s is the torsion. We can write s = or3, where o
is the spin density [4]. So, the Schwarzschild metric is
modified by the inclusion of torsion effects. The tor-
sion gives a natural way to understand the spin effects
in gravitation. Making use of an expression that re-
lates the torsion to the spin density, we can eliminate
s and include o in Eq. (7). Our primary goal is to
establish a possible relation between the spin density
o and the information number N and between the
Ricci scalar, as derived from Eq. (7), and informa-
tion. This is an effort to understand why information
plays an important role in the space-time structure
in the case wherethe torsion effects are included in
gravitation.

3. Analysis

Consider the case of a Schwarzschild metric with the
torsion. Substituting s = or? [4], we get the gravita-
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tional radius:

2GM | 3G%*0? ,
(— 2 + 508 r)zO. (8)

In the case of a spin parallel to the gravitation (plus
sign), we have

2 2
(2GM+3GJ TQ)O' o)

c2r 2c6

From whence, we obtain
TH,, = % [— (22/366)/((9C4G5M0'4 +

+ /BG5S (2610 481G M202)) ' /*)] +

+ % [(23(9c*GP Mot +

/BG4 160 ) /(6%)], (10)

where the plus sign in Eq. (10) corresponds to the
plus sign of the second term in Eq. (8). The negative
sign in Eq. (10) corresponds to the negative sign in
the second term of Eq. (8). In other words, we deal
with parallel and antiparallel spins. Let us write the
entropy formula as [6]

kg
where kp is the Boltzmann constant, {2 = Gh g

p c
Planck’s length, and Ay is horizon area [2]. This

is the Bekenstein-Hawking area-entropy law. This
is a macroscopic formula, and it should be viewed
in the same light as the classical macroscopic ther-
modynamic formulae. It describes how the proper-
ties of event horizons in general relativity change as
their parameters are varied. Substituting Eq. (10) in
Eq. (12), we obtain

7'(']41}3
SZET(THN)QZ
P
mkp |1 2/3 6 45 4
P

+1/BG606 (2¢10 + 81G4M202))1/3) +

+ (213 (9GP Mo +

+ /G506 (2c10 1 81G*M0?)) "/ 3) /(0202)} } 2,(12)
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where the minus sign in the root stands for the paral-
lel torsion and plus stands for the antiparallel one. We
note that the information number in nats is given

by [8]

= . 13

kB In2 ( )
Using the positive sign, equating Egs. (12) and (13),
and solving for the spin density as a function of in-
formation in nat N, we obtain the following solu-
tions:

1/2
B _ 4y 4AM (7r )3/2+ wcb /
Ty = 02p = = GBNT \In2 GEZN2)

(14)
1/2
_ 4 4c*M (L)?)/? mcb /
T TGN 2 T GENm2)
(15)

Similarly, the negative sign (or antiparallel spin) gives
the only real solution:

2 (‘I)o + ﬁm)l/g

[ 8m3cS M2 N Gsey

1, = 1/3 N3 1n 23

36205 (20 + $49) INn
4rcb 272¢12 N 1n 2

1/2
+ + ] ; (16)
9G2(2N In 2 9GS (Do + %@)1/3

where the quantities I'y and ®( are defined as follows:
Do=—487"c¢**In2° MO N? +

+ 2475 G M In 2" 'N'1 +

+ a0 MP N In 2t (17)
36m4c 4 M2 N5 1n 2° 318 N6 1n 26

by = 18

0 Gt GS (6 (18)

4. Calculation of the Ricci
Scalar and Its Relation to Information

Next, we are going to calculate the Ricci scalar in the
cases of parallel and antiparallel spins. So, we define
the metric coefficients to be

2GM 2 2
G " 3G*o 2.
rc2 26

A(r)y=c*[1— (19)
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and )
2GM  3G%*0% ]~

The correspondent Ricci scalar is given by [9]

R:-%[l—B(T)‘F%"‘
AT g

In the case of the torsion parallel to the gravity, we
get

R 18G%° 9 <RSch)2 (5)2.

22
c 2\ M c (22)

Similarly, in the case of the torsion antiparallel to the
gravity, we obtain

R_ 18G252 _ 9 <R5Ch>2 (g)g.

23
8 2\ M c (23)
Next, we proceed in writing the Ricci scalar as a func-
tion of the information number in nats V. In this cal-
culation, we will only deal with a parallel spin. The-
refore, we use Eqgs. (22) and (15) and obtain

R(o1/02), =

2
18G? 3/2  4cAM 278
_ 8G (l) c n wc @21
c8 In2 3G€I3)N3’/2 3G2€127N In2
R(03/04), =
2
B 718G2 (L>3/2 4t M B 27¢8 (25)
- ¢ |\n2 3GBN3 3G2ENIn2|’

which simplifies to

7T \3/2 [ Rsen 127
=12 (— 2
R(o1/o2)y (mz) (ggﬁ) + NZIn2’ (26)
7 /2 [ Rsen 127
R =12 (— (27
(03/04); <1n 2) <g§ vi) T NEmy @0
With reference to [6] and [7], we note that
3T
AiNE%an' (28)
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Equation (28) gives the cosmological constant as a
function of the information number N. Therefore,
Egs. (26) and (27) for the Ricci scalar become

(2 Rsa

R(01/02), = 12 (E) ( I /2> +AA, (29)
/¥ Rsa

R (03/04)T =12 (E) (W) + 4A. (30)

5. Conclusion

We have examined the effect of a torsion in the
Schwarzschild metric corrected for torsion effects and
its relation to information. In this case, the torsion
effects can be represented by the spin density. We
start by calculating the entropy at the horizon of such
a black hole, and then we equate the entropy to a
known expression that gives the entropy in terms of
the information number N. Thus, we obtain analyt-
ical expressions for the spin density as a function of
the information number N. We obtain two spin den-
sity solutions. One of them is real, and another one is
imaginary. Moreover, we have found that, for the spin
density, both real and imaginary roots scale propor-
tionally to the information number N according to
the relation o i% - % In the case of parallel spin,
we find that Ricci scalar also depends on the informa-
tion number according to the relation R o N2z 4+N-1
for both parallel and antiparallel spins. This comes
from an extra term that is equal to the cosmological
constant \ expressed as a function of the informa-
tion number N adds the information dependence to
the Ricci scalar via the cosmological constant A. In
this aspect, we can perceive the cosmological constant
as a cosmological depository of information that af-
fects the space-time structure or is included as an
important parameter in the space-time structure and
in the geometry of the Universe. Therefore, we con-
clude that information enters this torsion-corrected
metric via the dependence of the spin density on the
information number N, as well as the cosmological
constant itself.
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E®EKT KPYUYEHHS YOPHOI OIPU
TA I BIDIHOIIEHHSA 10 IH®OPMAILIIL

Peszowme

1 BUBYEeHHsI BIUIMBY KDY4Y€HHs Ha I'DaBiTallifo B IPOCTOPi-
4Jaci Ta #oro BigHOUIEHHS 10 iHMOpMaIil MU KOPUCTYEMOCS Me-
rpukoro IIIBaprminsa, ge KpyIeHHs IPHIPOIHO BBOJUTHCS Ue-
pe3 CHiHOBY IIUIBHICTH YaCTUHKU. B crieHapil 4opHOI Jipu Mu
OTpUMAJIA AHAJITUYHUI PO3B 30K JJIsl FpaBiTalliiiHOro pajiiyca
90pHO! Aipy 3 BKJIIOYEHHSIM CIIHY, 3BIIKH MU OOYHCIIHIN €H-
TpOIiIo JJIsl BUINAJKIB IapaJjesIbHUX Ta aHTHUIIAPAJIEJIbHUX CIIi-
HiB. Bisbme Toro, Mu 3HafNUIN 9OTUPH aHAJITHYHI PO3B’SI3KH
IS CIIIHOBOI IIJIBHOCTI B 3aJI€XKHOCTI Bix 4umcia indopmariil.
Kopucryouncs nuMu poss’si3kaMi, M OTPUMAJIN BHPa3H JJIsI
koedimientis Piudi sx dyukuil wucra indopwmarii N; orpuma-
HO TaKOK 3HAYEHH: JJIsl KOCMOJIOTi9HOI KOHCTaHTH.
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SEARCH FOR HIDDEN PARTICLES
IN INTENSITY FRONTIER EXPERIMENT SHiP

Despite the undeniable success of the Standard Model of particle physics (SM), there are some
phenomena (neutrino oscillations, baryon asymmetry of the Universe, dark matter, etc.) that
SM cannot explain. This phenomena indicate that the SM have to be modified. Most likely,
there are new particles beyond the SM. There are many experiments to search for new physics
that can be can divided into two types: energy and intensity frontiers. In experiments of the
first type, one tries to directly produce and detect new heavy particles. In experiments of the
second type, one tries to directly produce and detect new light particles that feebly interact with
SM particles. The future intensity frontier SHiP experiment (Search for Hidden Particles) at
the CERN SPS is discussed. Its advantages and technical characteristics are given.

Keywords: physics beyond the Standard Model, hidden particles, hidden sectors, renormal-
izable portals, intensity frontier experiment, SHiP, SPS.

1. Introduction

The Standard Model of particle physics (SM) [1-3]
was developed in the mid-1970s. It is one of the great-
est successes of physics. It is experimentally tested
with high precision for the processes of electroweak
and strong interactions with the participation of el-
ementary particles up to the energy scale ~100 GeV
and for individual processes up to several TeV. It pre-
dicted a number of particles, last of them (Higgs
boson) has been observed in 2012. However, the
SM cannot explain several phenomena in particle
physics, astrophysics, and cosmology. Namely: the
SM does not provide the dark matter candidate; the
SM does not explain neutrino oscillations and the
baryon asymmetry of the Universe; the SM cannot
solve the strong CP problem in particle physics, the
primordial perturbations problem and the horizon
problem in cosmology, etc.

The presence of the problems in the SM indicates
the incompleteness of the Standard Model and the
existence of as yet “hidden” sectors with particles
of a new physics. Although it may seem surprising,
but some of the above-mentioned SM problems re-
ally can be solved with help either heavy or light new
particles. Neutrino oscillations and the smallness of
the active neutrino mass can be explained as with

© V.M. GORKAVENKO, 2019
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help of a new particle with sub-eV mass, as well as
with help of heavy particles of the GUT scale, see,
e.g., [4]. The same can be said about the problem of
baryon asymmetry of the Universe and dark matter
problem: physics on the very different scales can be
responsible for it, see, e.g., [5].

Can the new light particles exist in the SM ex-
tensions? The answer is positive. There are many
theories beyond SM that have light particles in the
spectrum (e.g., GUT, SUSY, theories with extra di-
mensions), see, e.g., [6]. Light particles in those theo-
ries can be, e.g., (pseudo)-Goldstone bosons that were
produced as a result of the spontaneous breaking of
some not exact symmetry. Alternatively, a particle
can be massless at the tree level, but it can obtain
a light mass as a result of loops-involving corrections.

So, two answers on the question “why do we not
observe particles of the new physics?” are possi-
ble. First, the new particles can be very heavy (e.g.,
with the mass Mx 2 100 TeV), so they cannot be
directly produced at the present-day powerful accel-
erators like LHC. On other hand, the new particles
can be light (with mass below or of order of the elec-
troweak scale) and can feebly interact with particles
of the SM (otherwise, we would have already seen
them in the experiments). In this case, the light new
particles can be produced at many high-energy ex-
periments, but it were not still observed due to the
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Fig. 1. Search for new particles beyond SM with mass at the TeV region at CERN CMS

extreme rarity of events with their production and to
the complexity of their detection.

Based on the above, there are two types of particle
search experiments.

First of them is energy frontier experiments like
those at LHC or Fermilab. In these experiments, one
tries to directly produce and detect new heavy par-
ticles assuming that the coupling of new particles to
the SM particles is not very small. The new particles
with mass of several TeV are actively searched in such
experiments, see Fig. 1. Last decades, a lot of atten-
tion were paid to the energy frontier experiments.

Second of them is intensity frontier experiments. In
this experiments, we try to search for the particles
that feebly interact with the SM particles. So, in the
intensity frontier experiments, we search for very rare
events. For the successful production of hidden par-
ticles (to compensate their feeble interaction), those
experiments must have the largest possible luminos-
ity. In this sense, the beam-dump experiments are
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good as the intensity frontier experiments to seek the
GeV-scale hidden particles, because of their luminosi-
ties is several orders of magnitude larger than those
at colliders. The detection of hidden particles is pos-
sible only due to observing their decays into the SM
particles. So, these experiments must be background-
free. Because of the feeble interaction with the SM
particles, one can expect their small decay width and
long lifetime (here, we suppose that a hidden parti-
cle does not decay in non-SM channels, or the corre-
sponding partial decay width is very small). So, the
detector have to be placed as far as possible from the
point of the production of hidden particles.

The intensity frontier experiments have been paid
much less attention in the recent years. These ex-
periments include PS 191 (early 1980s), CHARM
(1980s), NuTeV (1990s), DONUT (late 1990s — early
2000). However, as was shown in [7,9], the search for
the new physics in the region of masses below the
electroweak scale is not sufficiently investigated.

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8



Search for Hidden Particles in Intensity Frontier Experiment SHiP

The difference between the energy and intensity
frontier experiments for seeking the hidden parti-
cles can be schematically illustrated with the help of
Fig. 2.

In this paper, we consider the future intensity fron-
tier SHiP (Search for Hidden Particles) beam-dump
experiment at the CERN Super Proton Synchrotron
(SPS) accelerator. Its advantages and technical char-
acteristics will be considered, and the class of theories
that can be tested on SHiP will be discussed.

2. Interaction of New
Particles with the SM Particles. Portals

If we will focused on detecting a new light parti-
cle, we have understand that this particle can orig-
inate from the large number of beyond-SM theo-
ries that predict different parameters for it (masses
of new particles and their coupling to the SM par-
ticles). In particular, such relatively light particles
can be mediators due to the interaction with par-
ticles of the SM and very heavy particles of “hidden
sectors”. Those light particles can be coupled to the
Standard Model sectors either via renormalizable in-
teractions with small dimensionless couplings (“por-
tals”) or by higher-dimensional operators suppressed
by the dimensionful couplings A~" corresponding to
a new energy scale of the hidden sector [7].

Because of a limited number of possible types of
particles (scalar, pseudoscalar, vector, pseudovector,
fermion), there is limited number of possible effective
Lagrangians of interaction of such particles with the
SM particles that satisfy the Lorentz conditions and
gauge invariance ones.

Renormalizable portals can be classified into the
following 3 types:

Vector portal: new particles are vector Abelian
fields (Aj,) with the field strength F},, that couple to
the hypercharge field F}/” of the SM as

_ 1 Qv
EVectorportal - EFMVFY ) (1)

where € is a dimensionless coupling characterising the
mixing between a new vector field with the fields of
Z-bosons and photons.

Scalar portal: new particles are neutral singlet
scalars, S;, that couple to the Higgs field

EScalarportal - ()\ZSZ + gzsf)(HTH)a (2)
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Fig. 2. Different strategies for the search for hidden particles
in the energy and intensity frontier experiments

where \; are dimensionless couplings, and g; are the
couplings with a dimension of mass.

Neutrino portal: new particles are neutral sin-
glet fermions Ny

ENcutrinoportal = FaIEa-HNIa (3)

where index a = e, u, 7 corresponds to the lepton
flavors, L,, is for the lepton doublet, F,; is for the new
matrix of the Yukawa constants, and H =ioyH*.
Non-renormalizable couplings of new particles to
the SM operators are also possible. For example,
pseudo-scalar axion-like particles A couple to SM as

Cas -
La=> 2L fy fo,A-

2

2],
« CA'Y ~ Q3 CA3 b Ab

- L F,F"A—- — G G°H A, 4
8t fa " 8r fa M )

where f = {quarks, leptons, neutrinos}, F),, is the

electromagnetic field strength tensor, qu the field
strength for a strong force, and the dual field strength
tensors are defined as QM = %e‘“’”"on.

Another important example is a Chern—Simons-like
gauge interaction [8] of a new pseudo-vector X,, par-
ticle

C
L) = /T;/ - X, (D,H)THBy, - ¢ + h.c. (5)
Y
Csu(2) t pAp
Lr=15——  Xu(QuH) P H - + e, (6)
SU(2)

where the Ay, Agy(2) are new scales of the theory,
Cy, Csy(2) are new dimensionless coupling constants,
and B, F,, are the field strength tensors of the
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Mo-W target/
hadron absorber

Fig. 3. General scheme of the SHiP facility

Uy (1) and SUw(2) gauge fields. After the sponta-
neous symmetry breaking of the Higgs field, this in-
teraction is effectively reduced to a renormalizable
interaction of the form

Los = e X, 2,002, + c """ X, 7,00 A, +
+ cwe™ N X, W, 0W (7)

So, from the experimental point of view, one has
to test all of the above-mentioned possible new inter-
actions in the wide range of new particle masses and
couplings.

3. SHiP Experiment

The SHiP experiment was first proposed in 2013
[10]. The technical proposal was presented in 2015
[11]. The theoretical background, main channels of
production and decay of new particles, and prelim-
inary estimations of the sensitivity region for differ-
ent portals for the SHiP experiment were considered
in 2016 [7]. Somewhat later, the clarifying comple-
mentary works were published [12-15]. Currently, the
SHiP collaboration [16] includes nearly 250 scientists
from 53 institutions. The experiment will begin its
work allegedly in 2026 year [17].

The main goal of the future SHiP beam-dump ex-
periment at the CERN SPS accelerator is to search
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for the new physics in the region of feebly interact-
ing long-lived light particles including Heavy Neu-
tral Leptons (HNL), vector, scalar, axion portals to
the Hidden Sector, and light supersymmetric parti-
cles. The experiment provides great opportunities for
the study of neutrino physics as well.

Now, we describe the work of the SHiP experi-
ment, see Fig. 3. A beam line from the CERN SPS
accelerator will transmit 400-GeV protons at the
SHiP. The proton beam will strike in a Molybdenum
and Tungsten fixed target at a center-of-mass en-
ergy Ecm ~ 27 GeV. Approximately 2 x 102° proton-
target collisions are expected in 5 years of the SHiP
operation. The great number of the SM particles and
hadrons will be produced under such collisions. Hid-
den particles are expected to be predominantly pro-
duced in the decays of the hadrons.

The main concept of the SHiP functioning is fol-
lowing. Almost all the produced SM particles should
be either absorbed or deflected in a magnetic field
(muons). Remaining events with SM particles can be
rejected using specially developed cuts. If the hidden
particles will decay into SM particles inside the decay
volume, the last will be detected. This will mean the
existence of hidden particles.

So, the target will be followed by a 5-m-long iron
hadron absorber. It will absorb the hadrons and the
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electromagnetic radiation from the target, but the de-
cays of mesons result in a large flux of muons and neu-
trinos. After the hadron stopper, a system of shield-
ing magnets (which extends over a length of ~40 m) is
located to deflect muons away from the fiducial decay
volume [12].

Despite the aim to search for the long-lived parti-
cles, the sensitive volume should be situated as close
as possible to the proton target due to relatively large
transverse momenta of the hidden particles with re-
spect to the beam axis. The minimum distance is de-
termined by the necessity for the system to absorb the
electromagnetic radiation and hadrons produced in
the proton-target collisions and to reduce the beam-
induced muon flux.

The system of detectors of the SHiP consists of
two parts. Just after the hadron absorber and muon
shield, the detector system for recoil signatures of
hidden-sector particle scattering and for neutrino
physics is located. The neutrino detector has mass
of nearly 10 tons. The study of neutrino physics is
based on a hybrid detector similar to the detector of
the OPERA Collaboration [18]. In addition, this sys-
tem allows one to detect and veto charged particles
produced outside the main decay volume.

The second detector system consist of the fiducial
decay volume that is contained in a nearly 50-m-long
rectangular vacuum tank. In order to suppress the
background from neutrinos interacting in the fidu-
cial volume, it is maintained at a pressure of O(1073)
bar. The decay volume is surrounded by background
taggers to tag the neutrino and muon inelastic scat-
terings in the surrounding structures, which may
produce long-lived neutral Standard Model particles

Modification of the SM that
can be tested on SHiP depending
on final states of the hidden particles decay

Decay modes Final states Models tested
Meson and lepton | =i, KI, 1 v portal, HNL,
(l=e,u,1) SUSY neutralino
Two leptons ete , utu~ V, S and A portals,
SUSY s-goldstino
Two mesons 7tx=, Kt K~ | V, S and A portals,
SUSY s-goldstino
3 bodies ti—v HNL, neutralino
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whose decay can mimic signal events. The vacuum
tank is followed by a large spectrometer with a rect-
angular acceptance of 5 m in width and 10 m in height
and a calorimeter. The system is constructed in such
a way to detect as many final states as possible in
order to be sensitive to a very wide range of models
that can be tested. With the help of Table, one can
see what modification of the SM is tested depending
on final states of the hidden particles decay.

It should be noted that the SHiP experiment
gives great opportunities for the study of neutrino
physics. As a result of nearly 2 x 10%° proton-target
collisions, V,,_ = 5.7x 10'® v, and v neutrino, N, =
= 5.7 x 10'8 electron neutrino, and Ny, =3.7x 1017
muon neutrino will be produced. It is expected to
detect nearly 10* 7-neutrino and at first to detect
anti 7-neutrino. It is very important, because only 14
7T-neutrino candidates by the experiment DONUT in
Fermilab and 10 m-neutrino candidates by the experi-
ment OPERA in CERN were found till now. No event
with anti 7-neutrino was still observed.

4. Conclusions

There are some indisputable phenomena that point
to the fact that SM has to be modified and com-
plemented by a new particle (particles). We are sure
that there is a new physics, but we do not know where
to search for it. There are many theoretical possibili-
ties to modify the SM by scalar, pseudoscalar, vec-
tor, pseudovector, or fermion particles of the new
physics. These particles may be sufficiently heavy on
the electroweak scale and the scale of energy of the
present colliders. But these particles may be light
(with masses less than that on the electroweak scale)
and may feebly interact with the SM particles. The
main task now is to experimentally observe particles
of the new physics.

Since the possibilities for increasing the energies
of the present colliders are limited by high costs, and
the heavy new particles are difficult to be produced, it
seems reasonable to check another variant and to find
light particles of the new physics in intensity frontier
experiments.

The goal of the SHiP experiment is to search for the
new physics in the region of feebly interacting long-
lived light particles including HNL, vector, scalar, ax-
ion particles with mass <10 GeV. There are theoret-
ical predictions for the sensitivity region of the SHiP
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experiment for each type of new-physics particles (in
the mass versus coupling constant coordinates). The
experiment will provide great opportunities for the
study of neutrino physics as well.

Since the idea of searching for new light feebly
interacting particles is very tempting and promis-
ing, there are another projects such as REDTOP
at the PS beam lines, NA64++, NA62++, LDMX,
AWAKE, KLEVER at the SPS beam lines, and
FASER, MATHUSLA, CODEX-b at the LHC. All
these experiments are compared and summarized in
[17]. It is possible that great discoveries in particle
physics are right ahead.

The work was presented on the conference “New
trends in high-energy physics”, May 12-18, Odessa,
Ukraine. I also thank Kyrylo Bondarenko for the use-
ful discussion and helpful comments.

1. S.L. Glashow. Partial symmetries of weak interactions.
Nucl. Phys. 22, 579 (1961).

2. S. Weinberg. A Model of leptons. Phys. Rev. Lett. 19, 1264
(1967).

3. A. Salam. Weak and electromagnetic interactions. In:
Proc. of 8th Nobel Symposium. Edit. by N. Svartholm
(Almquist and Wiksells, 1968), p. 367.

4. A. Strumia, F. Vissani. Neutrino masses and mixings and...
arXiv:hep-ph/0606054 (2010).

5. D.S. Gorbunov, V.A. Rubakov. Introduction to the The-
ory of the Early Universe: Hot Big Bang Theory (World
Scientific, 2011).

6. W. de Boer. Grand unified theories and supersymmetry
in particle physics and cosmology. Prog. Part. Nucl. Phys.
33, 201 (1994).

7. S. Alekhin. et al. A facility to search for hidden particles at
the CERN SPS: the SHiP physics case. Rept. Prog. Phys.
79, 124201 (2016).

8. I. Antoniadis, A. Boyarsky, S. Espahbodi, O. Ruchayskiy,
J.D. Wells. Anomaly driven signatures of new invisible
physics at the Large Hadron Collider. Nucl. Phys. B 824,
296 (2010).

9. J. Alexander et al. Dark Sectors 2016 Workshop: Commu-
nity report. arXiv:1608.08632, FERMILAB-CONF-16-421
(2016).

10. W. Bonivento et al. Proposal to search for Heavy Neutral
Leptons at the SPS. arXiv:1310.1762 (2013).

694

11. M. Anelli et al. A facility to Search for Hidden Parti-
cles (SHiP) at the CERN SPS. arXiv:1504.04956, CERN-
SPSC-2015-016, SPSC-P-350 (2015).

12. A. Akmete et al. The active muon shield in the SHiP ex-
periment. JINST 12, P05011 (2017).

13. C. Ahdida et al. Sensitivity of the SHiP experiment to
Heavy Neutral Leptons. J. High Energ. Phys. 2019, 77
(2019).

14. C. Ahdida et al. The experimental facility for the Search
for Hidden Particles at the CERN SPS. JINST 14, P03025
(2019).

15. 1. Boiarska, K. Bondarenko, A. Boyarsky, V. Gorkavenko,
M. Ovchynnikov, A. Sokolenko. Phenomenology of GeV-
scale scalar portal. arXiv:1904.10447v2 (2019).

16. https://ship.web.cern.ch/ship.

17. J. Beacham et al. Physics Beyond Colliders at CERN:
Beyond the Standard Model Working Group Re-
port. arXiv:1901.09966, CERN-PBC-REPORT-2018-007
(2019).

18. R. Acquafredda et al. OPERA collaboration. The OPERA
experiment in the CERN to Gran Sasso neutrino beam.
JINST 4, P04018 (2009).

Received 08.07.19

B.M. I'opxaserxo

TIOIIIVK YACTUHOK HOBOT
PIBUKU B EKCIIEPMMEHTI SHiP

Peszmowme

HesBakaroun na BesmuesHi ycmixu Cranmapraol Mogeni di-
3ukn ejeMenTapuux dactuaok (CM), icHyloTb OKpeMmi siBHIIA
(mefiTpunHi ocumisnii, 6apionna acuMerpis Bcecity, Temua
Marepis Tomp), axki CM nosicamtu me B 3Mo03i. Jlani sBuma
BKa3yIOTh Ha HeoOXxinuicTs Momudikanii CM Ta BBemeHHs HO-
BUX YJaCTHHOK. EKCIIEpHMEHTH 3 MOIIYKYy YacCTHHOK HOBOI bi-
3UKH MOXKHA DO3JI/JINTH Ha JIBa THUIIN: €KCIEPUMEHTU, B SKUX
HaMaraloThbCs JOCATTH HAWOLIBIIOI eHepril YaCTUHOK, II0 3i-
ITOBXYIOTHCSI, T4 EKCIIEPUMEHTH, B SIKUX HAMATAIOTHCS JIOCST-
THU HAKOIIBINOT KiJIbKOCTI HEOOXiJHUX peakiliii. B ekcrepuMen-
Tax IEpIIOro TUILY HAMAralThCs 0E3M0CEePEIHBO YTBOPUTU Ta
3apeecTpyBaTH HOBI BaKKi YaCTUHKH. B ekcriepuMeHTax Jpyro-
O TUILY HAMAraloThCs OE3M0CEPEHBO YTBOPUTH Ta 3aPEECTPy-
BaTHW HOBI JIErKi YaCTUHKH, 110 CJIAOKO B3a€MOJIIOTH 3 YaCTUH-
kamMu CM. B po60Ti 06roBoproerbcst Mailby THill €eKCIIEPUMEHT 3
BUCOKOIO iHTeHcuBHicTIO oz SHiP, mo npoBoguTuMerscst Ha
npuckopioBadi SPS CERN; i#ioro rexuiuni XxapakKTepuCTUKH Ta
rnepeBaru.
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SEARCHING FOR ODDERON
IN EXCLUSIVE REACTIONS

We discuss the possibility to use the pp — ppod process in identifying the odderon exchange. So
far, there is no unambiguous experimental evidence for the odderon, the charge conjugation
C = —1 counterpart of the C = +1 pomeron. Last year, the results of the TOTEM collabo-
ration suggest that the odderon exchange can be responsible for a disagreement of theoretical
calculations and the TOTEM data for the elastic proton-proton scattering. Here, we present
recent studies for the central exclusive production (CEP) of ¢¢ pairs in proton-proton col-
lisions. We consider the pomeron-pomeron fusion to ¢¢p (PP — ¢¢p) through the continuum
processes, due to the t- and G-channel reggeized ¢-meson, photon, and odderon exchanges,
as well as through the s-channel resonance process (PP — f2(2840) — ¢¢p). This fo state is
a candidate for a tensor glueball. The amplitudes for the processes are formulated within the
tensor-pomeron and vector-odderon approach. Some model parameters are determined from
the comparison to the WA 102 experimental data. The odderon exchange is not excluded by the
WA102 data for high ¢¢ invariant masses. The measurement of large Mgy or Yaim events at
the LHC would therefore suggest the presence of the odderon exchange. The process is advan-
tageous, as here the odderon does not couple to protons.

Keywords: exclusive reactions, meson, Regge physics, pomeron, odderon, LHC.

1. Introduction

Diffractive studies are one of the important parts of
the physics program for the RHIC and LHC experi-
ments. A particularly interesting class is the central-
exclusive-production (CEP) processes, where all cen-
trally produced particles are detected.

In recent years, there has been a renewed interest
in the exclusive production of 7#+7~ pairs at high en-
ergies related to successful experiments by the CDF
[1] and the CMS [2] collaborations. These measure-
ments are important in the context of the resonance
production, in particular, in searches for glueballs. In
the CDF and CMS experiments, the large rapidity
gaps around the centrally produced dimeson system
were checked, but the forward- and backward-going
(anti)protons were not detected. Preliminary results
of similar CEP studies have been presented by the
ALICE and LHCb collaborations at the LHC. Al-
though such results will have a diffractive nature, fur-

© P. LEBIEDOWICZ, A. SZCZUREK,
O. NACHTMANN, 2019
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ther efforts are needed to ensure their exclusivity. On-
going and planned experiments at the RHIC (see, e.g.,
[3]) and future experiments at the LHC will be able
to detect all particles produced in central exclusive
processes, including the forward- and backward-going
protons. The feasibility studies for the pp — pprT7—
process with the tagging of scattered protons, as car-
ried out for the ATLAS and ALFA detectors, are
in [4]. Similar possibilities exist using the CMS and
TOTEM detectors.

In [21], the tensor-pomeron and vector-odderon
concepts were introduced for soft reactions. In this
approach, the C = +1 pomeron and the reggeons
R4 = for,aor are treated as effective rank-2 sym-
metric tensor exchanges, while the C' = —1 odderon
and the reggeons R_ = wg, pr are treated as effec-
tive vector exchanges. For these effective exchanges,
a number of propagators and vertices, respecting
the standard rules of quantum field theory, were de-
rived from comparisons with experiments. This al-
lows for an easy construction of amplitudes for spe-
cific processes. In [22], the helicity structure of a
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Fig. 1. Born-level diagrams for the double pomeron central
exclusive ¢¢ production and their decays into KT K~ K+ K~:
¢¢ production via an fa resonance (a). Other resonances, e.g.,
of fo- and n-type, can also contribute here. The continuum ¢¢
production via an intermediate ¢ and odderon (O) exchanges,
respectively, (b) and (¢). P-y-P and O-P-O contributions are
also possible, but negligibly small

small-|t| proton-proton elastic scattering was consid-
ered in three models for the pomeron: tensor, vec-
tor, and scalar ones. Only the tensor ansatz for the
pomeron was found to be compatible with the high-
energy experiment on the polarized pp elastic scatter-
ing [10].

Applications of the tensor-pomeron and vector-
odderon ans’atze were given for the photoproduction
of pion pairs in [11] and for a number of central-
exclusive-production (CEP) reactions in pp collisions
in [12-20]. In addition, contributions from the sub-
leading exchanges, R, and R_, were discussed in
these works. As an example, for the pp — pppp re-
action [17], the contributions involving an odderon
are expected to be small since its coupling to a pro-
ton is very small. We have predicted asymmetries
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in the (pseudo)rapidity distributions of the centrally
produced antiproton and proton. The asymmetry is
caused by interference effects of the dominant (P, P)
with the subdominant (O+R_, P+ R, ) and (P4+R,,
O + R_) exchanges. We find only very small effects
for the odderon, roughly a factor of 10 smaller than
the effects due to reggeons.

So far, there is no unambiguous experimental evi-
dence of the odderon, the charge conjugation C' = —1
counterpart of the C = 41 pomeron, introduced on
theoretical grounds in [5]. A hint of the odderon was
seen in ISR results [6] as a small difference between
the differential cross-sections of elastic proton-proton
(pp) and proton-antiproton (pp) scatterings in the
diffractive dip region at /s = 53 GeV. Recently, the
TOTEM Collaboration has published data from high-
energy elastic pp scattering experiments at the LHC.
In [7], results were given for the p parameter, the ratio
of the real part to the imaginary one of the forward
scattering amplitude. The interpretation of these re-
sults is controversial at the moment.

As was discussed in [8], the exclusive diffractive
J/v and ¢ productions from the pomeron-odderon
fusion in high-energy pp and pp collisions are a direct
probe for a possible odderon exchange. For a nice re-
view of the odderon physics, see [9]. In the diffractive
production of ¢ meson pairs, it is possible to have
the pomeron-pomeron fusion with intermediate # /-
channel odderon exchange [20]; see the corresponding
diagram in Fig. 1, ¢. Thus, the pp — pp¢¢ reaction is
a good candidate for the odderon-exchange searches,
as it does not involve the coupling of the odderon to
the proton.

Studies of different decay channels in the central
exclusive production would be very valuable also in
the context of identification of glueballs. One of
the promising reactions is pp — ppop¢ with both
¢ = $(1020) mesons decaying into the K+ K~ chan-
nel. Structures in the ¢¢ invariant-mass spectrum
were observed by several experiments, e.g., in the
exclusive 77p — ¢on [23] and K~ p — ¢pA [24]
reactions, and in the central production [25]. Three
tensor states, f2(2010), f2(2300), and f2(2340), ob-
served previously in [23], were also observed in the
radiative decay J/¢ — v¢¢ [26]. The nature of these
resonances is not understood at present and a tensor
glueball has still not been clearly identified. Accor-
ding to lattice-QCD simulations, the lightest tensor
glueball has a mass between 2.2 and 2.4 GeV, see,
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e.g. [27]. The f2(2300) and f2(2340) states are good
candidates to be tensor glueballs.

For an interesting approach to the exclusive diffrac-
tive resonance production in pp collisions at high en-
ergies, see also Ref. [28,29].

2. A Sketch of Formalism

In [20], we considered the CEP of four charged kaons
via the intermediate ¢¢ state. Explicit expressions for
the pp — ppop¢ amplitudes involving the pomeron-
pomeron fusion to ¢¢ (PP — ¢¢) through the contin-
uum processes, due to the #- and @-channel reggeized
¢-meson, photon, and odderon exchanges, as well
as through the s-channel resonance reaction (PP —
— f2(2340) — ¢¢) were given there. Here, we discuss
briefly the continuum processes for the pp — ppp¢ re-
action.

The “Born-level” amplitude for the pp — ppp¢o re-
action is

MBorn :M(fg—exchange) +M(¢—exchange)+

+ M (O—exchange) ) (1)

For the continuum process with the odderon ex-
change (Fig. 1, ¢), the amplitude is a sum of ¢- and -
channel amplitudes. The ¢-channel term can be writ-
ten as
MO = (=i)a(p1, A\ )L (1, pa)u(Pas Aa)

H1v1
w s AB) pavi,en B (513’ tl) >

(PO N i *
< i0"0%  (pe, —ps) (e(¢> pd()%)) o

< iA©@) 102 (554 py) x

(PO A *
x ZFEMszzﬂz (p4’pt) (6(¢) P ()‘4)> X

« i AP) a2z, puavs (S04, t2) X

X u(pa, >\2)iFfL[P;IZ,’;) (P2, Po)u(py, Mp), (2)

where pgp, p1,2 and Agp, A2 = :I:% denote the four-
momenta and helicities of the protons and p3 4 and
Az4 = 0,%1 denote the four-momenta and helici-
ties of the ¢ mesons, respectively. p;, = p, — p1 — P3,
Pu=pa—Pa+p1, 5ij = (pi + ;)% t1 = (p1 — pa)?,
ta = (p2 — pp)>. I'®rp) and A®) denote the proton
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vertex function and the effective propagator, respec-
tively, for the tensorial pomeron. The corresponding
expressions are as follows [21]:

T EPP) (p', p) = —i3BennFi(t) X

{5 !+ 01 4206 + )] = 98 + D), ©)

(P 1 1
ZA;(MJ),KA(S’t) = ZS (g/uigl/A + Ju vk — 29/1.Vgl€>\) X
x (—isap) O, (4)

where Bpyn = 1.87 GeV~!. The pomeron trajectory
ap(t) is assumed to be of the standard linear form
(see, e.g., [30]): ap(t) = ap(0)+apt, ap(0) = 1.0808,
ofp =0.25 GeV ™2,

Our ansatz for the effective propagator of the C' =
= —1 odderon is [21]

A (O . Tlo . o(t)—
zAfw)(S,t) = _ZgWﬁg(_Zsa{o)a (t)-1

with

My=1GeV, ng==£l1. (5)
Here, ag(t) = ag(0) + apt and we choose, as an
example, af = 0.25 GeV~2, ag(0) = 1.05.

For the PO¢ vertex, we use an ansatz with two
rank-four tensor functions [20]:

ZF(P@¢) (k’/,k’) _ ZF(P®¢)((]C + k/)Q,k/27k2> %

MUK
% 2ap0p T (K, k) — bpop T2 (K, k). (6)

LR HURA
We take the factorized form for the PO¢ form factor:
FEON(k+ 1) k2 k%) =
= F((k+K')?) F(k”) FT9 (k%) (7)

where F(k?) = (1 — k?/A?)~! and F(P@W(mi) = 1.
The coupling parameters apgy, bpos and the cutoff
parameter A? could be adjusted to the WA102 exper-
imental data [25].

At low /s34 = Mgy, the Regge type of interac-
tion is not realistic and should be switched off. To
achieve this, we multiplied the @-exchange amplitude
by a purely phenomenological factor: Fip,(s34) =1—
— exp|(Sthr — S34)/Sthr)] With sgny = 4mi.
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Fig. 2. Distributions in the ¢¢ invariant mass. The calcula-
tions were done for /s = 29.1 GeV and |rp ¢e| < 0.2. The
WA102 experimental data from [25| are shown. In the top
panel, the green solid line corresponds to the non-reggeized ¢-
exchange contribution. The results for two prescriptions of the
reggeization, (10) and (12), are shown by the black and blue
lines, respectively. In the bottom panel, we show the com-
plete results including the f2(2340)-resonance contribution and
the continuum processes due to the reggeized-¢, odderon, and
photon exchanges. The black long-dashed line corresponds to
the ¢-exchange contribution and the black dashed line corre-
sponds to the f2(2340) contribution. The red dotted line rep-
resents the odderon-exchange contribution for apgy = 0 and
brog = 1.0 GeV~! in (6)

The amplitude for the process shown in Fig. 1, b
has the same form as the amplitude with the Q ex-
change, but we have to make the following replace-
ments:

(P@)d’) (k/ k)

uVmA
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(P¢¢)(k/ k), (8)
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Fig. 3. Distributions in My (left) and in Yq;g (right) for the
pp — pp(¢pp — KT K~ K+ K~) reaction calculated for /s =
13 TeV and |ni| < 2.5, pr,xk > 0.2 GeV. The coherent sum of
all terms is shown by the red and blue solid lines for ng = —1
and ng = +1, respectively. Here, we take ag(0) = 1.05. The
absorption effects are included in the calculations

iND) (s34,9%) = iA) (p). (9)

We have fixed the coupling parameters of the tensor
pomeron to the ¢ meson, based on the HERA exper-
imental data for the vp — ¢p reaction; see [18§].

We should take the reggeization of the intermedi-
ate ¢ meson into account. We consider two prescrip-
tions of the reggeization (only expected to hold in the
|p?| /s34 < 1 regime):

$34 ag(p®)—
AL - AR ) (explivsan) 22 (10

thr
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¢(834) = gexp (Sthr_834) — 27

Sthr

(11)
where Sip, = 4m?¢. Alternatively, we use

AW () — AE;?LQ (®) F(Yairr) +

P1P2

+ Agﬁ% () 1 = F(Yar)] x

ag(p*)—1
X (eXp(i¢>(834)) 834) ;

Sthr

(12)

where F(Yaig) = exp (—cy|Yaig|). Here, ¢y is an un-
known parameter which measures, how rapidly one
approaches the Regge regime. This gives the proper
Regge behavior for s34 — 4m$S > 1 GeV?; whereas,
for smaller ss4, we have the mesonic behavior. We
take ag(p®) = ag(0) + o, B, ap(0) = 0.1 [31], and
al, = 0.9 GeV 2,

In order to give realistic predictions, we shall in-
clude the absorption effects calculated at the am-
plitude level and related to the pp nonperturba-
tive interactions. The full amplitude includes the pp-
rescattering corrections (absorption effects)

Born absorption

Mopp—sppss = M + M pion
Mabsorption( ) _
$,P1t,Pot) =

7

= o [ PR M B o) M (5, K, (13)

872s

where py; = py; — ki and py, = Py, + Kt MSF) is the
elastic pp-scattering amplitude with the momentum
transfer t = —k?.

3. Results
It is very difficult to describe the WA102 data for the
pp — ppp¢ reaction including resonances and the ¢-
exchange mechanism only [20]. Inclusion of the odd-
eron exchange improves the description of the WA102
data [25]. The result of our analysis is shown in Fig. 2.
Having fixed the parameters of our quasifit to the
WA102 data, we wish to show our predictions for
the LHC. In Fig. 3, we show the results for the AT-
LAS experimental conditions (|nx| < 2.5, pyx >
> 0.2 GeV). The distribution in the four-kaon invari-
ant mass is shown in the top panel, and the differ-
ence in rapidities between the two ¢ mesons in the
bottom panel. The small intercept of the ¢-reggeon
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exchange, ay(0) = 0.1, makes the ¢-exchange con-
tribution steeply falling with increasing Myx and
[Yaig|. Therefore, an odderon with an intercept ag(0)
around 1.0 should be clearly visible in the region of
large four-kaon invariant masses and for large rapidity
distance between the ¢ mesons.

4. Conclusions

By confronting our model results, including the odd-
eron, the reggeized ¢ exchange, and the f2(2340)
resonance exchange contributions, with the WA102
data from [25], we derived an upper limit for the
PQO¢ coupling. advantage of this process for experi-
mental studies is the following. With regard for the
typical kinematic cuts for LHC experiments in the
pp — ppopp — ppKTK~KTK™ reaction, we have
found that the odderon exchange contribution should
be distinguishable from other contributions for a large
rapidity distance between the outgoing ¢ mesons and
in the region of large four-kaon invariant masses. At
least, it should be possible to derive an upper limit
on the odderon contribution in this reaction.

Our results can be summarized in the following
way:

e CEP is a particularly interesting class of pro-
cesses which provides insight to the unexplored soft
QCD phenomena. The fully differential studies of the
exclusive pp — ppp¢ reaction within the tensor-
pomeron and vector-odderon approaches were exe-
cuted; for more details, see [20].

e Integrated cross-sections of order of a few nb are
obtained, including the experimental cuts relevant for
the LHC experiments. The distribution in the rapid-
ity difference of both ¢-mesons could shed light on
the f2(2340) — ¢¢ coupling, not known at present.
Here, we used only one type of PPf; coupling (out
of 7 possible; see [14]). We have checked that, for
the distributions studied here, the choice of PPf,
coupling is not important. This is a different situ-
ation compared to the one observed by us for the
pp — pp(PP — f2(1270) — 7+ 7~) reaction [14].

e From our model, we have found that the odderon-
exchange contribution should be distinguishable from
other contributions for a relatively large rapidity sep-
aration between the ¢ mesons.

Hence, to study this type of mechanism, one should
investigate events with rather large four-kaon invari-
ant masses, outside of the region of resonances. These
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events are then “three-gap events” proton—gap—¢—
gap—¢—gap—proton. Experimentally, this should be a
clear signature.

e Clearly, an experimental study of CEP of a ¢-
meson pair should be very valuable for clarifying the
status of the odderon. At least, it should be possible
to derive an upper limit on the odderon contribution
to this reaction.
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supported by the Polish Scientific Center of the PAS
in Kiev.
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I1. Jlebedosun

IMOIIYKM OJAEPOHA
B EKCKJ/IIOBMBHUX PEAKIIAX

Peszmowme

OOroBOpIOEMO MOKJIUBICTH KOPHCTYBATHCS IIPOIECOM DPp —
— ppop¢ s inenrudikaril oominy ommeponom. lo nporo ya-
Cy HEMA€ OJHO3HAYHOI'O €KCIIEPUMEHTAJIBHOIO JOKa3y iCHyBaH-
Hsl OJlIepOHa — MapTHEpa IIOMEPOHAa 3 HEraTUBHUM 3apsiIOBUM

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

cupsizkerasaM, C' = —1. Munynopiuni pesynsraru Kosrabopa-
mii TOTEM BKasymTh Ha Te, 10 OJJAEPOH MOXKE CIIPUYMHSI-
TH PO3DOIXKHICTH MiK TEOPETUIHUMU PO3PAXyHKAMH Ta JAHU-
vmu TOTEM npo npy»kHe po3cisiHHsg NPOTOHIB. Mu mpe3eHTye-
MO HOBI pe3yJIbTaT! JOCJIiPKEHD IIEHTPAJIbHOTO €KCKJIIO3UBHO-
ro napomkenus (CEP) map ¢¢ B nporonnnx sitkHeHHsax. Mu
pasrispaemo ¢ysio nomeponis y ¢¢ (PP — ¢¢) dyepes xon-
THHYYM 3aBIAKE OOMiHy B i- i {-KaHAJAX DEIKE30BAHOTO -
Me30Ha, POTOHA Ta OJIIEPOHA, a TAKOXK PE30HAHCHOTO IIPOIECY
B s-xanaii (PP — f2(2340) — ¢¢). Hacturka f2 € KaHAIIATOM
Ha TEH30pHUI TUI060JI. AMIUIiTYma Tpoecy pOPMYIIIOETHCA B
paMKax IiXomy, Jie IIOMEPOH € TEH30POM, & OJIEPOH € BEKTO-
poM. [leski 3 mapamMeTpiB Mo/e/i BUBHAYAIOTHCS 3 MOPIBHSHHS
3 ekcriepuMeHTaJ bHUMU JanuvMu WA102. Tani WA102 He BU-
KJIIOYal0Th OOMIH OJIIEPOHOM JiJIsi BEJIMKUX IHBapiaHTHUX Mac
¢¢. Curnan 3 BenukumMu 3HadenHaMu Mgy abo Ygig ma LHC
Oy/le TAKUM YUHOM BKa3yBaTU Ha IPUCYTHICTH OOMIHY OIIepo-
woM. lleit portec mpuBabIUBUI IIIe TUM, 11O B HBOMY OJIIEPOH
He IPUB’A3YETHCS 10 IPOTOHA.
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THE CONSTRUCTION OF RELATIVISTICALLY
INVARIANT EQUATIONS OF MOTION AND THE
MOMENTUM ENERGY TENSOR FOR SPIN-1/2
PARTICLES WITH POLARIZABILITIES

IN AN ELECTROMAGNETIC FIELD

Within the covariant Lagrangian formalism, the equations of motion for spin-1/2 particles
with polarizabilities in an electromagnetic field have been obtained. We have analyzed the phe-
nomenological tensor constant quantities as well.

Keywords: covariant Lagrangian, equations of motion, energy-momentum tensor.

1. Introduction

The interaction of an electromagnetic field with struc-
tural particles in the electrodynamics of hadrons is
based on the main principles of relativistic quan-
tum field theory. In the model conceptions, where
basically the diagram technique is used, a num-
ber of features for the interaction of photons with
hadrons have been determined [1, 2]. However, the
diagram technique is mainly employed for the de-
scription of electromagnetic processes in the sim-
plest quark systems. In the case of interaction for
the electromagnetic field with complex quark-gluon
systems in the low-energy region, the perturbative
methods of QCD are nonapplicable. That is why, the
low-energy theorems and sum rules were widely used
lately [3—6]. In the present time, the low-energy elec-
tromagnetic characteristics which are connected with
a hadron structure, such as the formfactor and polar-
izabilities, can be obtained from nonrelativistic the-
ory [5]. Passing from the nonrelativistic electrody-
namics to the relativistic field theory, one can use the
correspondence principle. But it is necessary to inves-
tigate, step-by-step, a transition from the covariant
Lagrangian formalism to the Hamiltonian one [7-9].

The determination of the interaction vertex of ~-
photons with protons taking the polarizabilities into
account [10] has recently been used to fit experimen-
tal data on the Compton scattering on a proton in
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the energy neighborhood of a birth of the A(1232)-
resonance [11].

This work is a continuation of the researches which
have been presented in our previous articles [6-8].
Using the covariant Lagrangian of interaction of the
electromagnetic field with a structural polarizable
particle, the equations of motion and the canonical
and metric energy-momentum tensors have been ob-
tained.

2. Total Lagrangian

The total Lagrangian of the interaction of spin-1/2
particles with the electromagnetic field consists of the
Lagrangian for the free electromagnetic field L._,,,
the spinor or Dirac field Lp, the Lagrangian of the
interaction of the free electromagnetic field with the
Dirac field Liyt— p, and the Lagrangian which consid-
ers electric and magnetic polarizabilities of particles
Leaop,-p:

Liotal-p = Le—m + Lp + Ling—p + Laoﬂo—D7

thus,
1 —1. o

Liotal—-D = 1 W FP + 9 (22% 0 —m) Y —
- 6(@%1#)140‘ + ij@au’ (1>
where

2 ~
K, = — (aOFauF# + 50F0';4F5)a

m
- —
au:au - 61/7

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8



The Construction of Relativistically Invariant Equations

o’u_z n (7<—z>/
© —2<1/w 0 w)

1 is the wave function of spin-1/2 particles.

In this expression sz = %@WWFPU, where F,,
and F#,, are the tensors of the electromagnetic field,
ap and [y are electric and magnetic polarizabil-
ities, and ey, o~ Levi-Civita antisymmetric tensor
(9123 = 1),

The part of the Lagrangian with polarizabilities can
be rewritten as

1

L) = — 1 FnG" = Ky, 07, (2)
where G*” is the antisymmetric tensor G** = —G"*
and is equal to
oL 4dm ~
GH = - —— = — FrEPY —
St = s %
— FyOPt) — Go0nFH), 3)

where

O =1/2(0% + ©"P).

3. Equations of Motion

For the interaction of the spinor and electromagnetic
fields, the following system of equations is used:

OL oL

“oa4, Vamay @
oL oL

S R—' (5)
o) 0(0,)
oL, oL “

"3y T 80,9)

where A, is the vector-potential of the electromag-
netic field.

From Lagrangian (1) and expressions (4-6), we
get the equations of motion for a charged spin-1/2
particle with ag-electric and Sp-magnetic polarizabil-
ities:

0, F™ = epy¥ip — 0,GM (7)
R .

(17" 0 —m)> = Ay = 5 (0 Koy~

- iKol/r)/aaywa (8)

_ — _

Y (i 0y 7y +m)=—e Ay —
" v N o

- 5 ¢ (8VKUV’70) - 'L(a 7/1)7 Km/~ (9)
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In expression (7), eyy”1) is the current associated
with a charge, —0,G"” is the current associated with
the polarizabilities of the particle.

Following work [12], we perform a relativistic gener-
alization of the phenomenological energy-momentum
tensor of the interaction of the electromagnetic field
with a polarizable particle as

™ = TSLV + T(%éyﬁ)irlt'

(10)
Lagrangian (1) takes the form
Ltotai-p = Lo + Lint, (11)

where
1 — (1. z
Ly = 1 s FP 4+ <2Wa 9 m> (0
is the usual Lagrangian, and
Lint = —6(@%41/))14& + KO'V(—)JU

is the interaction Lagrangian of the electromagnetic
field and a particle with polarizabilities.

With the help of Lagrangian (11), the canonical
energy-momentum tensor looks like

OLg - 0Ly 0Lg
T = ———(0VA,)+90"¢ =+ 0" —
a(a#A,))( 2 0(0u)  O(0u¥)
1 1
— g (== F,3F*® — ZF,3G°").
As a result, we get
e e 9 G e
can — “can(0) + T po ) (12)

where %G 0o F'P7 is the energy-momentum tensor of
the interaction of the electromagnetic field with re-
gard for the polarizabilities of the particle, and

gt

TMV - _FupaVAp + T

can(0) Fo o FP7 + 01,

Using the unambigious definition of a energy-
momentum tensor for T}, we construct the metric
energy-momentum tensor:

14 v v g”l] lo
Thetr = Ttan(oy + Op(F1PAY) + TGpon : (13)
Thus, The.. reads
v g
Thtes = FUPF + £ Fpo P74 €07 —
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g
—jrAY + TGWFP", (14)
where j* is the current density of the charged particle.

In the rest frame of the particle, we obtain the en-
ergy density of interaction for the particle with po-

larizabilities and the electromagnetic field:
2
£ = =0 (agE’ + R,

where ©% is the energy density of the spin-1/2
particle.

4. Conclusion

Taking the covariant Lagrangian of interaction of the
electromagnetic field with a polarizable spin-1,/2 par-
ticle as a basis in the Lagrangian covariant formalism,
the equations of motion have been found. The cor-
relations between the covariant Lagrangian and the
canonical and metric energy-momentum tensors have
been obtained. In the rest frame of the particle, the
energy density of interaction for the particle with po-
larizabilities and the electromagnetic field has been
determined.
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Pezowme
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CTIO B eJleKTpoMar"iTHoMmy nosti. Hamu Takork nmpoanasizoBaso
dbenomeHoJIOr 1 YHI TEH30PHI KOHCTAHTH.
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INVESTIGATING THE SOFT PROCESSES
WITHIN THE QCD COLOR DIPOLE PICTURE

We consider the QCD parton saturation models to describe the soft interactions at the high-
energy limit. The total and elastic cross-sections, as well as the elastic slope parameter, are
obtained for proton-proton and pion-proton collisions and compared to recent experimental

results.
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1. Introduction

Describing the soft processes with the use of the
QCD degrees of freedom is a quite difficult task,
since they are dominated by a long distance (non-
perturbative) physics. It has been shown that the soft
observables as the total and elastic cross-sections de-
pend on the transition region between the high parton
density system (saturation domain) and the pertur-
bative QCD region [1-3]. The parton saturation phe-
nomenon [4-6| is a well-established property of high-
energy systems and gives a high-quality description of
inclusive and exclusive deep inelastic scattering (DIS)
data. As evidences of the successfulness of such ap-
proach, we quote the description of the light meson
photoproduction cross-section [7-12] and diffractive
DIS (DDIS) [13, 14]. Both are semihard processes,
where an important contribution to the cross-section
comes from the kinematic region in a vicinity of the
saturation momentum, );. This dimensional scale in-
creases in the high-energy region. A well-known for-
malism, which is intuitive, and where the saturation
physics can be easily implemented, is the QCD color
dipole picture. It is expected [1] that the soft pro-
cesses measured, for instance, at the Large Hadron
Collider (LHC) in hadron-hadron collisions probe the
distances about r ~ 1/Qs < R, with Ry being the
hadron radius. In this context, the hadron scatter-
ing at the LHC could be described by color dipoles as
the correct degrees of freedom even at large transverse
distances. Moreover, it has been shown that the cross-
sections for soft hadron-hadron collisions within satu-

© M.V.T. MACHADO, 2019
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ration approaches satisfy the Froissart—Martin bound
[2,3]. In this context, the role played by the unitarized
hard Pomeron contribution to the soft observables has
been carefully discussed in Refs. [15, 16].

Here, we will investigate the soft observable in the
small-t regime within the color dipole picture and
parton saturation approaches. The paper is organized
as follows. In the next section, we summarize the
theoretical information to compute the cross-section
for hadron-hadron collisions in two color dipole ap-
proaches. First, we consider the asymptotic cross-
section following Ref. [3]|, where the pp cross-section
is assumed to be dominated by the two-gluon pro-
duction in the final state, pp — gg + X. There, the
main ingredients are the gluon distribution of a pro-
jectile and the partonic cross-section associates to
the interaction gN — gg + X. We also consider the
model presented in Ref. [1], where the virtual photon
wave-function is replaced by the corresponding wave-
function for the hadron projectile. The hadron-proton
interaction is computed using the dipole-proton am-
plitude constrained from DIS data. The numerical
results from both models are compared to experi-
mental measurements focusing in the LHC kinematic
regime. Finally, we discuss the main theoretical un-
certainties and present the main conclusions.

2. Theoretical Frameworks
and Their Phenomenological Applications

Our first investigation will consider the color dipole
approach applied to hadron-hadron collisions pro-
posed in Refs. [3]. For simplicity, we address initially
the case for proton-proton collisions in colliders. The
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formalism is able to provide us the production cross-
section of (heavy or light) quark pairs or gluons at
the final state. Namely, similarly to photon-hadron
interactions, the total quark production cross-section
is given by [17,18]
2m
- (%72)
o(pp — qqX) = 2 / dy 11G (21, pf) X

x 0(GN — q3X), 0 (1)

where y = %ln(xl/xg) is the rapidity of the pair,
irp ~ mq is the factorization scale. The quantity
x1G(x1, %) is the projectile gluon density on the
scale pp, and the partonic cross-section o(GN —
— q¢X) is given by [17]

o(GN — qqX) = /dz d? |\Ilgﬂqq(z,)|2 oq5c(%,),

with g, 4 being the pQCD calculated distribution
amplitude, which describes the dependence of the |¢q)
Fock component on the transverse separation and the
fractional momentum. It is given by,

|¥G—qq(2, R)|2 = 05(82(:)};) {mgkg(mqr) +
+ 122+ (1- z)Q} mik%(mqr)}, (2)

where a;(pg) is the strong coupling constant, which
is probed on a renormalization scale pgr ~ mg. We
note that the wavefunction will lead to a dominance
of dipole sizes around r ~ 1/mg in the correspond-
ing r-integration. Therefore, for the heavy quark pro-
duction, the color transparency behavior from the
dipole cross-section, ogip(r) o r?, will be the main
contribution (pQCD). In the charm case, an impor-
tant contribution should come from the saturation re-
gion, since the typical dipole size, 7 ~ 1 GeV ™!, can
reach an order of magnitude similar to the satura-
tion radius, R,(x) = 1/Q(x) o (v/5)™? (with A ~
~ 0.3). On the other hand, for light quarks, m, ~
~ (0.14 GeV, we are deep in the parton saturation
(very low-z9 and a small scale of the probe) and non-
perturbative regions. This will be the case in the fol-
lowing calculation.

In the partonic cross-section, o4gc is the cross-
section for the scattering of a color neutral quark-
antiquark-gluon system on the target and is directly
connected with the dipole cross-section:

9
04qG = g [0dip (22, 2R) + 0aip (22, ZR)] —

706

~ <ol R) 3)
Here, the main idea is that, at high energies, a gluon
G from the projectile hadron can develop a fluc-
tuation which contains a QQ pair. Interaction with
the color field of a target then may release these
heavy quarks. Such an approach is valid for high
energies, where the coherence length I, ~ 1/x4 is
larger than the target radius. Therefore, it is natu-
ral to include the parton saturation effects and to
use the fact the dipole cross-section is universal,
i.e., it is process-independent. For the sake of com-
pleteness, the parton momentum fractions are writ-
ten in terms of the quark pair rapidity and masses,
_ 2mg

Tr2 = =5 exp(+y).

Following Ref. [3], we obtain the asymptotic
hadron-hadron cross-section within the color dipole
approach considering the dominant process, pp —
— GGX, at high energies. Now, the gluon G from
the projectile hadron develops a fluctuation which
contains a two-gluon (GG) pair further interacting
with target’s color field. Accordingly, the expression
for the total cross-section for the gluon production at
the final state is given by [19],

~nn (22¢)

olpp — GGX) =2 dyz,1G (xl,/ﬁw) X

x o(GN — GGX), (4)

where the effective gluon mass, mg, was introduced
in order to regularize the calculation. Thus, in this
case, one has 719 = 2’“730 exp(+y).

The new partonic cross-section c(GN — GGX) is
given by

o(GN = GGX) =

= /dzd2R‘\I/GHGG(Z,R)‘2Jggg(z,R), (5)

with ¥s_,ce being the corresponding distribution
amplitude associated with the |GG) Fock state. It
is obtained from Eq. (2) in the following way:
Veeal® =2(Ne.—1)|¥g_4q]* . The partonic cross-
section oggga is the cross-section for the scattering a
a color neutral three-gluon system on the target and
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is directly related to the dipole cross-section in the
following way [19]:

1
IGGG = 5 [0dip(T2, 2R) + 04ip (22, ZR) + 04ip(x2, R)].
(6)

Now, we will present the corresponding phe-
nomenology using Eq. (4). From Ref. [3], we identify
basically two main shortcomings: a very low value for
the effective gluon mass, mg = 154 MeV < Agep
and the identification of the scale p with the starting
evolution scale in the gluon PDFs considered, u? =
= Q3. Here, we will use the value mg = 400 MeV.
Moreover, for the gluon PDF probed on the low scale,
p? = m% = 0.16 GeV? will be given for a prediction
from the parton saturation physics,

v Glr, Q?) = 290 [1 - <1 + gz> 68}

= 5 x_
A2 o,

(7)

where the updated values for the GBW model param-
eters have been used [20]. Consistently, for the dipole
cross-section, we have used the GBW parametriza-
tion. It should be noted that the result is parameter-
free and corresponds to the soft Pomeron contribution
to the cross-section.

In Fig. 1, the result for the total cross-section in
proton-proton collisions is presented. Both the low-
energy and cosmic rays data are presented. Expe-
rimental measurements from colliders are properly
identified [21], especially the recent LHC data. The
asymptotic model is in a quite good agreement com-
pared to accelerator data, despite no further adjust-
ment has been done. There is some room for fitting
the reggeon contribution at low energies.

We have also considered another color dipole ap-
proach addressing the soft scattering processes. In
such a case, other observables can be described as
the elastic cross-section and the elastic slope param-
eter. We follow Ref. [1] and compute the total cross-
section in following way:

ot (Vs) =
= 2/d2b0/dz/d27"|‘1/h(r, 2)[? N(s,r,b). (8)

It depends on the color dipole amplitude, N(s,r,b),
and on the hadron wavefunction, ¥y (r, z). The ex-
pressions resembles the same equation for the DIS
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Fig. 1. (pp total cross-section as a function of the center-of-
mass-energy, including low-energy and cosmic rays data. The
LHC data are explicitly identified (TOTEM and ATLAS Col-
laborations)

description within the color dipole approach. In other
words, the photon wavefunction is replaced by the
hadron one. Here, in the meson-proton scattering, a
meson is treated as a gq pair: the calculation implies
that DIS, i.e., the interaction of a color dipole with a
proton target and the saturation physics can be em-
bedded in the dipole amplitude. A similar approach
has been considered also in Refs. [22-24], where the
Pomeron dynamics is written in terms of the dipole-
dipole cross-section. For instance, in Ref. [22], the
large dipoles are dominated by a soft Pomeron con-
tribution, whereas small dipoles are driven by a hard
Pomeron piece (two-Pomeron model with hard and
soft Pomerons). On the other hand, in Ref. [23, 24]
based on Mueller’s cascade model, the authors dis-
cussed several contributions including the effect of
Pomeron loops.

To characterize mesons and baryons, we use the
phenomenological ansatz from Wirbel-Stech-Bauer
(WSB) [22] which gives

2(1—2)

AL =2) —-1)2/aazd) ~r2/(483) (g
27TS%Nh e 2 e a( )

wh(za I‘) =

where the hadron wave function normalization to
unity, [dzd?r |¢p(z,1)]> = 1, requires the following
normalization constant:

1
Ny, = /dz z2(1—2) e~ 27207/ (2A5) (10)
0
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G0 (PP) and G, (pp) - Saturation Model

G(Iot (pp) ——
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200 | PDG (2018) —e— 1
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Gy (mb), G (mb)
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10 100 1000 10000 100000
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Fig. 2. The total and elastic cross-sections for pp collisions.
The upper cross-sections are total cross-sections, while the
lower ones are the elastic cross-sections. Tevatron, SPS, LHC,
and cosmic rays data are presented [21]. The lines are the
results from the eikonal-type (saturation) model

B, (pp) - Saturation Model

pp ——
ATLAS-ALFA +———
TOTEM +——

pp ——1 =

By (GeV?)
\
o

100 1000 10000

100000
Vs (GeV)

Fig. 3. Slope Bg(s) for the pp elastic scattering as a function
of v/s. The recent LHC data from TOTEM and ATLAS-ALFA
are presented

Therefore, mesons and baryons are assumed to
have a ¢q and quark—diquark valence structure. Since
quark—diquark systems are equivalent to ¢q systems,
this allows us to model not only mesons but also
baryons as color-dipoles. The values of the param-
eters in our case are the following: Az, = 0.3(2)
and S, = 0.86(0.607) fm, for p/p(nt), respec-
tively [22].

Before discussing an impact-parameter dipole am-
plitude extracted from DIS data, we would need
to rewrite the energy dependence from the photon-
hadron scattering in terms of the appropriate Bjorken
scaling variable-z. In this work, the following ansatz

708

has been considered:

1 sr?

= 11
z  (soR2)’ (11)
which has been successfully considered in Ref. [25].
Here, s ~ m? and R, = 0.2 fm. Such an ansatz is

numerically equivalent to the proposal % = é, with
0

Q% ~ (2my)? ~ m3, done in Ref. [1]. For simplicity
and faster numerical calculations, we consider the last
relation, where the Q3 parameter will be extracted
from the total cross-section data.

We tested an eikonal-like expression for the dipole
amplitude, where the impact parameter dependence
is factorized from the energy dependence. The func-
tion S(b) is described by the dipole profile func-
tion. Namely, the amplitude has the following form:

N(z,r,b) =1—exp (—;&(m,r)S(b))
(rQs(2))?

6’(1’,7") = O—Ofv

28 (12)
= —K;(pb

7TR2 1 (ﬁ )a
where we have considered the parameters for & from
the GBW saturation model [20] and the value R? =

= 4.5 GeV~2. Here, the parameter 3 was defined

as [ = g. In Fig. 2, we present the results as-
sociated with the application of the model for the
b-dependent color dipole amplitude to the pp scat-
tering at the accelerator energy regime. Accordingly,
we can say that the model adequately describes the
proton-proton cross-section data, and we extend it
to higher energies to make predictions for cosmic-ray
energies. Moreover, in Fig. 3, we present the slope
parameter, Bej(s) as a function of the center-of-mass
energy. We present the comparison against the recent
LHC data, and it was found that the description of
data is quite reasonable.

In summary, we have applied the color dipole pic-
ture to the soft hadron-hadron scattering, by includ-
ing the parton saturation phenomenon as the tran-
sition region between the soft and hard domains. We
have shown that the inclusive process is mainly driven
for dipole sizes near the saturation radius in the high-
energy regime. The main advantage is that the cor-
responding phenomenology is almost free of param-
eters, as they are completely constrained from DIS
data in ep interactions. The models rely on the dipole
cross-section or b-dependent dipole amplitude and
indicate that the impact parameter profile is cru-
cial for a good data description. The advent of the

S(b)
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LHC opened a new window for the studies of the
diffraction and the elastic and inelastic scatterings, as
they are not strongly contaminated by non-diffractive
events. This is translated in the Regge-theory lan-
guage saying that the scattering amplitude is com-
pletely determined by a Pomeron exchange. The cur-
rent measurements on these soft observables at the
LHC in proton-proton collisions are in a very good
shape, covering the energies of 0.9, 2.76, 7, 8, and
13 TeV [21]. In the context of the saturation physics,
the soft Pomeron may be understood as an unitarized
perturbation Pomeron [26]. It can be shown that the
trajectory of a soft Pomeron could emerge as a re-
sult of the interplay between perturbative physics of
a hard Pormeron and the confining properties of the
QCD vacuum. Specifically, the local unitarization in
the impact parameter plane can lead to a reason-
able description of the intercept and the slope of a
soft Pomeron [26]. Our work corroborates those state-
ments, once the soft observable in the small-t regime
is correctly described within the color dipole picture
and the parton saturation approach.

The author thanks the conference organizers and
other presenters for making this valuable opportu-
nity available to all of us. Thank you for your gra-
cious hospitality and professionalism. This work was
partially financed by the Brazilian funding agencies
CNPq and CAPES.
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JOCJLTYKEHHS M’ AKX
IMPOILIECIB B PAMKAX KOJILOPOBOI'O
JINTIOJIBLHOTO TIAXOIY KX /T

PesmowMme

B po6oti mu posriasgaemo KX/I-mapToHHy MOZEIb HACHICHHST
JJIs1 ONUCY M’SIKUX IIPOLECIB TP BUCOKUX eHepriax. OTpuMaHo
MOBHMUII Ta IPY?KHUI IIepepi3n, a TAKOXK MapaMeTp HaXUILy IJIs
PO3CisiHHSI TIPOTOHIB Ha IMPOTOHAX Ta IIOHIB Ha mpoToHax. Li
pe3yJIbTaTy MOPIBHIOIOTHCS 3 €KCIEPUMEHAIBHIMI JAHUMH.
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THE ELECTROWEAK PHASE TRANSITION

IN A SPONTANEOUSLY MAGNETIZED PLASMA

We investigate the electroweak phase transition (EWPT) in the Minimal (One Higgs doublet)
Standard Model (SM) with account for the spontaneous generation of magnetic and chromo-
magnetic fields. As it is known, in the SM for the mass of a Higgs boson greater than 75 GeV,
this phase transition is of the second order. But, according to Sakharov’s conditions for the
formation of the baryon asymmetry in the early Universe, it has to be strongly of the first
order. In the Two Higgs doublets SM, there is a parametric space, where the first-order phase
transition is realized for the realistic Higgs boson mass mu = 125 GeV. On the other hand,
in the hot Universe, the spontaneous magnetization of a plasma had happened. The spon-
taneously generated (chromo) magnetic fields are temperature-dependent. They influence the
EWPT. The color chromomagnetic fields B3 and Bg are created spontaneously in the gluon
sector of QCD at a temperature T > Ty higher the deconfinement temperature Tq. The usual
magnetic field H has also to be spontaneously generated. For T close to the Tepwpr, these

magnetic fields could change the kind of the phase transition.

Keywords: electroweak phase transition, standard model, deconfinement.

1. Introduction

In the Early Universe, there are many phase transi-
tions. The most important is EWPT, when particles
acquired masses. Other important problem is baryo-
genesis.

As is well known, in the Minimal Standard Model
(MSM) of elementary particles, EWPT is of the first
order for the mass of a Higgs boson less than 75
GeV. For greater masses, it is of the second order. Ex-
periments give my = 125 GeV. Sakharov [1] proposed
the conditions for generation of the asymmetry be-
tween baryons and antibaryons. Today, they are for-
mulated as three baryogenesis conditions. According
to them, the phase transition should be strongly of
the first order. So, Sakharov’s conditions are violated.

Another important property of non-Abelian gauge
fields at high temperatures is a spontaneous vacuum
magnetization. It is closely related to the asymptotic
freedom, which happens due to a large magnetic mo-
ment of charged color gluons (gyromagnetic ratio
v =2).

In fact, the asymptotic freedom at high tempera-
tures is always accompanied by the background sta-

© P. MINAIEV, V. SKALOZUB, 2019
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ble, temperature-dependent, and long-range chromo-
magnetic fields [2].

The magnetization phenomenon was investigated
in the SU(3) gluodynamics in detail [3], and the su-
persymmetric theories [4, 5] were developed by ana-
lytic methods and in the SU(2) gluodynamics [6, 7]
by Monte-Carlo simulations on a lattice. In all these
cases, the spontaneous creation of magnetic fields
was bdetected. Within the application to the early
Universe, the spontaneous vacuum magnetization in
the electroweak sector of the standard model was de-
scribed in [8].

At the LHC experiments, a new matter, namely,
phase-quark—gluon plasma (QGP), has to be pro-
duced in heavy ion collisions. The deconfinement
phase transition (DPT) temperature is expected to
be of the order of Ty ~180-200 MeV. In theory, the
investigation of the DPT and QGP properties were
carried out by different method — analytic perturba-
tive and nonperturbative.

In papers [9, 10], we have shown that, due to the
vacuum polarization of quark fields by the color mag-
netic fields B3 and Bg existing in the QGP after
DPT, the usual magnetic field H can be generated
for temperatures T; < T < Tgwpr. The field H is

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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temperature-dependent and occupies a large plasma
volume as the fields B3 and Bsg [3].

In the present paper, we will investigate the in-
fluence of the magnetic and chromomagnetic fields
spontaneously created after DPT on EWPT. The
magnetic fields could realize Sakharov’s conditions in
MSM and change the behavior of phase transitions as
in the superconductivity. The proper time represen-
tation is used. The effective potential of the external
fields V (¢, B3, Bs, H, T') with one-loop plus daisy dia-
grams accounting for the gluons and all quark flavors
at finite temperatures is calculated. This field config-
uration is stable due to the daisy diagram contribu-
tions, which cancel the imaginary terms presenting
in the one-loop effective potential of charged gluons
V() (B3, Bs,T). To estimate the field strengths, the
asymptotic high temperature expansion derived by
Mellin’s transformation technique is applied [2,11].

2. Effective Potential of MSM
with Magnetic Fields at Finite Temperatures

The spontaneous vacuum magnetization has been de-
rived from the investigation of the effective potential
(EP) of covariantly constant(soursless) chromomag-
netic fields H* = H§%, which is a solution to the
classical Yang—Mills field equation, where H = const,
and a is an isotopic index,

V(H,T) = H; +VW(H,T). (1)

It includes the tree-level and one-loop parts. The min-
imum of the EP at a high temperature T corresponds
to the nonzero magnetic field.

The Lagrangian of the boson sector of the Salam—
Weinberg model is

1,1 y
L = —ZFWF(;‘ - EGMUG“ + (DmI))*(D“‘I’) +
m? A
+ 5 (@74 @) - 2(27 4 9), @)

where the following standard notations are intro-
duced:

F, = 0,A% — 0, A% + ge®° AL AC,
G, = 0,B, — 0,B,, (3)

1.1
D, =0, + ing#T + 529/3“'
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The vacuum expectation value of the field ® is

0= 5 (0) 2

The fields of Z-, W*-bosons, and photons are

1
+ 1 < A2
Wk = ﬁiAu +iA2),
— 3 _ 7
Zy e (94}, = 9'Bu), (5)
— /A3 /
A= e (AL B

For the investigation of EWPT, according to [9,13],
the EP is

+VO(p) + VI(H, T, ¢.) + VERE (H, T, 6.).  (6)

To compute the EP V(1) in the background mag-
netic fields, let us introduce the proper time, and s-
representation for the Green functions:

G = —i/exp(—is(Gil)“b)ds. (7)

To incorporate the temperature into this formalism,
the connection between the Matsubara Green func-
tion and the Green function at the zero temperature
is needed:

Gl (z,2';T) =
+o00
= Z(—l)("ﬂm"’“Gib(x — [z]Bu, 2" — nBu), (8)

where sz is the corresponding function at T = 0,
B8 =1/T, u=(0,0,0,1), [x] denotes an integer part
of x4/8,0, = 1 in the case of physical fermions, and
o = 0 for bosons and ghost fields.

The one-loop contribution to EP is given by the
expression

1
v = —5TrIn Geb, (9)

where G stands for the propagators of all the quan-
tum fields W*,Z, ... in the background magnetic
field H.

The term with n = 0 in Eqgs. (8) and (9) gives the
zero-temperature expression for the Green function
and EP, respectively.
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Fig. 1. Effective potential view at different temperatures; the
symmetry is broken
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Fig. 2. Effective potential view at a temperature of 365 GeV;
the symmetry is restored

Strengths of generated fields

T,GeV| ¢ % H,10%2! G | H3,10%% G | Hg, 10?3 G
100 |0.96 | —0.35 0.436 0.131 1.092
200 |0.75| —2.1 1.97 0.601 3.17
260 | 0.4 | —4.9 3.28 0.928 4.91
300 |0.26 | —10.14 4.70 1.20 6.66
350 |0.11| —18.77 6.66 2.13 9.28
363 | 0.01 | —21.68 6.69 2.18 9.51
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In the quark sector of EP, we have the mixing of
external magnetic and chromomagnetic fields, accord-
ing to [9]. The next linear combinations are appear

Hy  Hs
Hj =qpH + < )
F=4af 9\ 5 23
Hs  Hs
H7=qpH+ (—);
F=af g 3 2
Hy
HE =qrH — g—=.
F= g\/§

They are included in the quark part of EP

3 oo
unark = # ZZ Z (*1)l X

f a=ll=—o00

(10)

o0
2,2

x g ™7 5T ($H coth (sHE) — 1). (11)

0

In our calculations, H, Hs, and Hg are parame-
ters. To investigate EWPT, we need to calculate EP
as a function of ¢, at some constant temperature and
for different temperatures, to look after the behavior
of the symmetry, and to find the values of parameters,

which minimize EP.

3. Numerical Results

For numerical calculations, we use the following di-
mensionless parameters:

0_ V(O)eQ' T_ V(T)€2' _ be .
M, ;71\4{,1[/ ' 5(0)’ (12)
_my M s Mws
:uf_Mwy f,a_M‘%Va p — MwP.

After the calculation, we should find the minimum
value depending on ¢, Hsz, Hs, and H for a fixed
temperature.

The strength of generated fields at the energy min-
imum is shown in Table. The most important point
is the next one — we have nonzero chromomagnetic
and magnetic fields and a negative value of EP. The
magnetic field is two orders less than the chromomag-
netic one.

In Figs. 1 and 2, the behavior of the symmetry
is shown. We have minimum of EP with a nonzero
scalar field. The symmetry is restored at high tem-
peratures. The critical temperature is obtained near
TEWPT = 365 GeV.
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4. Conclusions

In our calculations, we applied the consistent approx-
imation for the effective potential accounting for the
one-loop plus daisy diagrams. It includes the terms of
the order ~g? and ~¢3 and makes the potential real
due to the cancellation of the imaginary terms. That
is sufficient at high temperatures because of small
couplings.

The most interesting observation of the above
investigation is twofold. First, as the temperature
grows, the magnetic field strengths are increased.
Second, simultaneously, the value of the effective po-
tential at the minimum is negative.

Really, as we have noted already, the asymp-
totic freedom at high temperatures has always to
be accompanied by the temperature-dependent back-
ground magnetic fields [2].

As it follows from the obtained results, the strong
chromo(magnetic) fields of the order Hszg ~ 10—
10" G and H ~ 10'6-10'" G must be present in
QGP [9]. This influences all the processes happen-
ing and may serve as the distinguishable signals of
DPT. Due to the magnetization, in particular, all the
initial states of charged particles have to be discrete
ones. These fields are present at higher temperatures,
as the deconfinement appears. At temperatures close
to Tewpu, the strengths are 5 order higher than for
the deconfinement temperature.

We have demonstrated that EWPT in MSM has
the critical temperature near 360 GeV, and the
nonzero magnetic and chromomagnetic fields should
be spontaneously generated as well. In Fig. 1, we
see that there is no reheating phase. This illustrates
that the phase transition is of the second type, and
Sakharov’s conditions are not satisfied. So, even with
magnetic and chromomagnetic fields, the phase tran-
sition is of the second order.

As was shown in [12], the Sakharov conditions can
be satisfied in the parametric space of the Two Higgs
doublet Standard Model without background mag-
netic fields.

This work is partially supported by the ICTP
through AF-06.
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EJIEKTPOCJIABKII ®A30BUI
[IEPEXIJI B CIIOHTAHHO HAMAT'HIYEHIN ITJIA3MI

PesmowMme

Hocmimkyerbest esieKTpocaabkuit ¢a3oBuil nepexiy B MiHi-
MaJsibHIA (ommH aymuier xirrciBebkux 6oszoniB) CranmaprHiit
Mopmeni (CM) 3 ypaxyBaHHSIM CHOHTAHHOTO HAPOJYKEHHS Ma-
THITHUX Ta XPOMOMArHITHUX IIOJIB IIPU BUCOKIiil TemMuepaTypi.
4k Bigomo, B CM myist macu 6030Ha Xirrca, 6iibiiit 3a 75 ['eB,
el dhazoBuil mepexis € mepexonoM JApyroro pomay. Ase Bimmo-
BizHO 710 KpuTepiiB Caxaposa jist popMyBaHHsI GapiOHHOI acu-
MeTpil Ha panHiX eramax eBosroril Beecsity, Bin nmoBunen 6yTu
2KOPCTKHUM II€EPEXOJIOM IIEPIIOro pody. B mapameTrpuyHOMy Ipo-
cropi aBogytersol CM 6e3 MarHiTHUX MOJIIB MOXKJIMBUI 1Iepe-
Xizg nepuioro poxay. B panabomy BcecsiTi icHyBasu cioHTaHHO
HAPO/PKEHI TeMIlepaTypo3aJie’KHi MarHiTHI Ta XpOMOMAarHiTHi
moJisi. XpoMoMarHiTHi nosisi B3 i Bg HapOIKyBaJjIuCh B TVIIOOH-
Homy cekTopi KX/ 3a temneparypu T > Ty, 6iab1o1 3a Tem-
neparypy jgekoHdalimenty T,. 3BudaiiHe MartsiTHe mmojie Hapo-
JPKYyBaJIOCh 33 PaxXyHOK KBapKOBUX II€TeJIb. 1K Pe3yJsIbTaT, 11
Temneparyp 1, 6JU3bKUX 10 KPUTUIHOI Temiieparypu TEwpT,
i MOJIsE MOXKYTh 3MIHUTH XapakTep (ha30BOro MEPEXOLIY.
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MASS RECONSTRUCTION OF MSSM HIGGS BOSON

The problems of the Standard Model, as well as questions related to Higgs boson properties
led to the need to model the ttH associated production and the Higgs boson decay to a top
quark pair within the MSSM model. With the help of computer programs MadGraph, Pythia,
and Delphes and using the latest kinematic cuts taken from experimental data obtained at the
LHC, we have predicted the masses of MSSM Higgs bosons, A and H.

Keywords: MSSM Higgs boson, top quark, b-tagging, computer modeling, the mass of a

Higgs boson.

1. Introduction

The study of the properties of a Higgs boson discov-
ered in 2012 is one of the main objectives of the LHC
[1]. The importance of the experiments is related to
the refinement of the channels of formation and de-
cay of the Higgs boson, which shows that there are
deviations of more than 2¢ from the Standard Model
(SM). Such data, together with the theoretical pre-
dictions of new physics, such as supersymmetry and
the theory of extra dimensions, lead to the need to
model the properties of the Higgs boson beyond the
SM (BSM) such as production cross sections, angu-
lar distributions, and masses of supersymmetric Higgs
bosons.

The existence of SM problems related to the im-
possibility of combining gravity with the other three
types of interactions, the problem of radiative correc-
tions to the Higgs boson mass, neutrino oscillations,
and dark matter and dark energy problems lead to
the introduction of new theories, one of which is su-
persymmetry. There are many supersymmetric the-
ories. We will further use Minimal Supersymmetric
Standard Model (MSSM) for the prediction of new
supersymmetric particles — superpartners of the Higgs
boson. The advantage of such a search lies not only
in the possibility of going beyond the framework of
the SM, but also in the small mass of the Higgs
superparticles provided by the new theories. Such
searches could be implemented both at the existing
LHC collider, and at future accelerators of the type
ILC or FCC. To establish a deviation from the SM
behavior, the next goal is to identify the nature of
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the electro-weak symmetry breaking (EWSB), which
is connected with properties of the top quark and
Higgs boson interactions. Predictions for the coupling
of the Higgs boson to top quarks directly influence the
measurements of the production and decay rates and
angular correlations. Therefore, this information can
be used to study whether the data are compatible
with the SM predictions for the Higgs boson. Since
the QCD and electroweak gauge interactions of top
quarks have been well established, the top Yukawa
coupling might differ from the SM value. Therefore,
the measurement of the ttH production rate and the
tt decay of an A boson can provide a direct informa-
tion about the top-Higgs Yukawa coupling, probably
the most crucial coupling to fermions. The anomalous
interaction of the Higgs boson with the top quark,
has been experimentally studied through the mea-
surement of the Higgs boson production in associ-
ation with a top quark, [2]. According to the com-
bined analysis of the experimental data at the LHC,
the constrain on the top quark Yukawa coupling,
Yz, within [—0.9, —0.5] and [1.0, 2.1] x y?™ were ob-
tained. Recent ATLAS Higgs results using Run-2
data at a center-of-mass energy of 13 TeV with up
to an integrated luminosity of 80 fb~! to probe BSM
coupling for the tH + ttH processes [3| showed that
the Higgs boson will continue to provide an important
probe for new physics and beyond.

To implement the searches for the MSSM Higgs
bosons and to facilitate their findings, we chose a spe-
cific search channels and the methods by which the
corresponding superparticles were identified. Using
the latest experimental data for the t¢tH production
of a Higgs boson [4], b-tagging algorithm, MadGraph,
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Pythia, and Delphes programs, and latest kinematic
cuts we predicted the masses of superparticles, A
and H.

2. B-Tagging Identification
and Reconstruction of MSSM
Higgs Boson Masses

The top-quark Yukawa coupling y; is parametrized as
me - .
Ly = _Tth(at +ibiys) t,

where m; is the top-quark mass, v = 174 GeV is the
vacuum expectation value, and the coefficient a (b)
denotes the CP-even (CP-odd) coupling, respectively.

Examples of Feynman diagrams for the considered
tt and ttH processes are presented in Fig. 1.

It is necessary to reconstruct as many final particles
as possible for the disentanglement of decay products
of the exotic particles from the SM background. The
B-tagging identification connected with b-quark sig-
natures has following features and benefits for the
experimental determination of primary particles:

e hadrons containing b-quarks have sufficient life-
time;

e presence of a secondary vertex (SV);

e tracks with large impact parameter (IP);

e the bottom quark is much more massive, with
mass about 5 GeV, and thus its decay products have
higher transverse momentum;

¢ h-jets have higher multiplicities and invariant
masses;

e the B-decay produces often leptons.

We carried out a comprehensive computer mod-
eling of the MSSM Higgs boson mass using Mad-
Graph, Pythia, and Delphes programs. With the help
of the program MadGraph, we carried out a calcula-
tion of the production cross-sections of the processes
under consideration. The simulation of further devel-
opments, i.e. all information on decomposition prod-
ucts and their kinematic data, was produced using the
Pythia program. In our calculations with the Pythia
program, we used the latest experimental constraints
on the low tan 8 region covered by the ttH, H — tt
processes [5]. The calculation of the response of a de-
tector to the resulting array of events was carried out
using the Delphes program. We made a selection of
events on the basis of additional kinematic restric-
tions associated with the peculiarities of the reactions
under consideration and the b-tagging method.

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

Fig. 1. Examples of Feynman diagrams for the pp — A (up)
and pp — ttH (down) production process from [4]
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Let us consider these processes separately and in
more details.

2.1. pp — A — tt process

The importance of the formation of a top quark
pair is associated both with the possibility of a good
identification of top quarks using the b-tagging algo-
rithm and with the search for new physics due to the
Yukawa constants of the top-quark and Higgs boson
interaction [6]. The SM makes predictions for the cou-
pling of the Higgs boson to a top quark. Therefore,
the measurement of the decay rates of the observed
state yields the information which can be used to
probe whether data are compatible with the SM pre-
dictions for the Higgs boson. Loop-induced vertices
allow probing for BSM contributions of new particles
in the loops. In addition, it must be said that the the
measuring of the properties of top pair quarks also
sheds light on the stability of the electroweak vac-
uum [7]. The importance of this section is connected
with the improvement of the searches for H — ¢t
by studying the fully leptonic and semileptonic final
states [8]. The results of our calculations presented in
[9] are shown in Fig. 2.
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The most probable decay channels for a CP-even
boson, H, are the following:

® bb;

o 7T,

e tt.

We are dealing with massive MSSM particles which
prefer to decay into the most massive decay prod-
ucts, for example, into a top-anti-top quark pair. So,
we will consider the decay of the CP-odd Higgs bo-
son into a top-anti-top quark pair, A — tt. With the
help of the program MadGraph, we calculated the
production cross-section of the pp — A — tt process
presented in Fig. 3.

The increase of the production cross-section with
the energy at the LHC and its large value for the for-
mation of an A boson, about 0.2 pb at the energy of
14 TeV, lead to the conclusion about the importance
of the consideration of this channel of formation and
decay of the MSSM Higgs boson. Kinematic proper-
ties of decay products of A boson at the energy 14 TeV
were modeled and presented in Fig. 4.

From Fig. 4, we see that jet pr is maximal in the
region of 30-50 GeV/c and then sharply decreases in
the region of 120-140 GeV/c. The average jet mass
is about 5-7 GeV /¢, which is in accordance with the
mass of the b-quark, into which the top quark decays
with a probability of 99.8%. The angular distribution
of the decay products shown in Fig. 4, b indicates
the predominant direction of the decay products in
the direction of angles from 35° to 90° to the axis of
the proton-proton collision. In Fig. 5, we present the
distribution for jets over the momenta and angles.

Using the distribution of Fig. 5, we can pick out the
most high-energetic jets and present their separation
in Fig. 6.

Using the data of Fig. 6, we can predict the mass
of the A boson, which is about 360 GeV/c, since the
momentum is equal to the mass at high energies.

2.2. ttH production process

We considered a combined analysis of proton-proton
collision data at center-of-mass energies of /s = 7, 8,
and 13 TeV, corresponding to integrated luminosities
up to 5.1, 19.7, and 35.9 fb~!, respectively. In this ex-
periment, the observation of the ¢¢H production with
a significance of 5.2 standard deviations above the
background-only hypothesis, at a Higgs boson mass
of 125.09 GeV was reported in [4]. Then we consid-
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Fig. 7. Production cross-section of the pp — Htt process as a
function of the energy range at the LHC

ered the decay process of the Higgs boson, H — bb,
as the most probable [9].

Using the program MadGraph, we calculated the
production cross-sections pp — Htt of a Higgs bo-
son via the proton-proton interaction. Our calcula-
tions for the range of 2-14 TeV at the LHC are pre-
sented in Fig. 7.

With the program Pythia, we simulated a further
development of events. The detector response to the
received array of events was modeled by the program
Delphes. Thus, our simulation was maximally close
to the experimental conditions.

The results of calculations of the jet mass range and
the eta distribution of jets are presented in Fig. 8. The
events were selected with the following cuts: the num-
ber of jets, Ncharged > Or ~4, transverse momen-
tum, pr > 80 GeV, By, = 1, mass of one b-jet,
M > 4 GeV. From the jet distribution in Fig. 4, we
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distribution of jets (b)
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Fig. 9. Modeled angular and pr jet distributions

conclude that the mass of jets of about 1620 GeV for
the minimal number of jets equal to 4 corresponds to
the b-jet distribution and to the corresponding angu-
lar distribution of jet flux signals about the selected
distribution of the jet flow in the direction perpendic-
ular to the proton collision axis with 6 ~ 40°-90°.

As a result of the detector response calculations
for the process pp — Htt — Hbbbb with N = 5000
initial events and corresponding cross section of about
0.517 fb at 14 TeV at the LHC, we get the angular
and pr jet distributions presented in Fig. 9.
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We have used together the following kinematic con-
straints: rapidity —0.5 < y < 0.5, mass of jets of
about 4 < M < 5 GeV, number of charge jets,
Ncharged > 4, transverse momentum, pr > 120 GeV,
parameter of the MSSM model, My ~ 500 GeV.
Thus, we selected the toughest and most massive jets
that can be formed from the decay process of the CP-
even Higgs boson of the MSSM model. As we can see
from Fig. 9, the approximate mass of one jet is about
150-170 GeV/c. We used the fact that each of the
protons has an energy of 7 TeV, giving a total col-
lision energy of 14 TeV. At this energy, the protons
move at about 0.999999990 of the speed of light. Kno-
wing the most probable Higgs boson decay channel,
H — bb, we conclude that the mass of the CP-even
Higgs boson is about 300-340 GeV /c.

3. Conclusions

We have considered the most important channels of
the MSSM Higgs boson production and decay. Since
these channels are associated with the formation and
decay of top quarks, whose properties shed light on
the instability of the electroweak vacuum, the study
of such reactions seems the most relevant to us. In
addition, the MSSM Higgs bosons are the lightest
supersymmetric particles predicted by supersymme-
try. Therefore, finding their masses at the LHC col-
lider is possible in the near future, which would re-
move a lot of theoretical questions related to the sym-
metries and unification of interactions. Using the pro-
grams MadGraph, Pythia, and Delphes to simulate
the processes and to model the response of a detector,
as well as strict kinematic cuts on the angles and mo-
menta of particles taken from the experimental data,
we have calculated the masses of the A boson equal
to 360 GeV/c and H boson equal approximately to
320 GeV/e.
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PEKOHCTPVYKIISA MACU MSSM BO3OHA XII'TCA

Pezowme

IIpo6siemu CrangaprHol Mojesi, a TakoK MUTaHHS, [TOB’A3aHi
3 BJIACTHBOCTSAME 6030Ha Xirrca, mpusBeam O HeOOXigHOCTI
MoJtesiroBaHHs ttH acoriiioBaHOro yTBOpeHHsI i po3mnaigy 6030-
Ha Xirrca Ha TOI KBapKoBy mnapy B pamMkax MSSM wmopesi.
3a gonomororo koM’ orepaux nporpam MadGraphb, Pythia8 i
Delphes3 Ta BukopucranHsi OCTaHHIX KIHEMaTUIHUX OOMEXKEHb,
B3STHX 3 €eKCIIEPUMEHTAJIbHUX JaHuX, orpuManux Ha LHC, mu
nepeabaunan macu MSSM 6ozonis Xirrca, A i H.
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SYMPLECTIC FIELD THEORY OF THE GALILEAN
COVARIANT SCALAR AND SPINOR REPRESENTATIONS

We explore the concept of the extended Galilei group, a representation for the symplectic quan-
tum mechanics in the manifold G, written in the light-cone of a five-dimensional de Sitter
space-time in the phase space. The Hilbert space is constructed endowed with a symplectic
structure. We study the unitary operators describing rotations and translations, whose gener-
ators satisfy the Lie algebra of G. This representation gives rise to the Schrédinger (Klein—
Gordon-like) equation for the wave function in the phase space such that the dependent vari-
ables have the position and linear momentum contents. The wave functions are associated
to the Wigner function through the Moyal product such that the wave functions represent a
quasiamplitude of probability. We construct the Pauli-Schrodinger (Dirac-like) equation in the
phase space in its explicitly covariant form. Finally, we show the equivalence between the five-
dimensional formalism of the phase space with the usual formalism, proposing a solution that

recovers the non-covariant form of the Pauli-Schrodinger equation in the phase space.

Keywords:

1. Introduction

In 1988, Takahashi et. al. [1] began a study of the
Galilean covariance, where it was possible to de-
velop an explicitly covariant non-relativistic field the-
ory. With this formalism, the Schrédinger equation
takes a similar form as the Klein—Gordon equation in
the light-cone of a (4,1) de Sitter space [2, 3]. With
the advent of the Galilean covariance, it was possi-
ble to derive the non-relativistic version of the Dirac
theory, which is known in its usual form as the Pauli—
Schrédinger equation. The goal in the present work is
to derive a Wigner representation for such covariant
theory.

The Wigner quasiprobability distribution (also
called the Wigner function or the Wigner—Ville dis-
tribution in honor of Eugene Wigner and Jean—André
Ville) was introduced by Eugene Wigner in 1932 [4] in
order to study quantum corrections to classical sta-
tistical mechanics. The aim was to relate the wave
function that appears in the Schrédinger equation
to a probability distribution in the phase space. It
is a generating function for all the spatial autocorre-
lation functions of a given quantum mechanical func-

© G.X.A. PETRONILO, S.C. ULHOA,
A.E. SANTANA, 2019
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tion 9 (x). Thus, it maps the quantum density ma-
trix onto the real phase space functions and opera-
tors introduced by Hermann Weyl in 1927 [5] in a
context related to the theory of representations in
mathematics (Weyl quantization in physics). Indeed,
this is the Wigner—Weyl transformation of the den-
sity matrix; i.e., the realization of that operator in
the phase space. It was later re-derived by Jean Ville
in 1948 [6] as a quadratic representation (in sign)
of the local time frequency energy of a signal, effec-
tively a spectrogram. In 1949, José Enrique Moyal
[7], who independently derived the Wigner function,
as the functional generator of the quantum momen-
tum, as a basis for an elegant codification of all ex-
pected values and, therefore, of quantum mechanics
in the phase-space formulation (phase-space repre-
sentation). This representation has been applied to a
number of areas such as statistical mechanics, quan-
tum chemistry, quantum optics, classical optics, sig-
nal analysis, electrical engineering, seismology, time-
frequency analysis for music signals, spectrograms in
biology and speech processing, and motor design. In
order to derive a phase-space representation for the
Galilean-covariant spin 1/2 particles, we use a sym-
plectic representation for the Galilei group, which is
associated with the Wigner approach [8-11].
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This article is organized as follows. In Section 2,
the construction of the Galilean covariance is presen-
ted. The Schrodinger (Klein—Gordon-like) equation
and the Pauli-Schrédinger (Dirac-like) equation are
derived showing the equivalence between our formal-
ism and the usual non-relativistic formalism. In Sec-
tion 4, a symplectic structure is constructed in the
Galilean manifold. Using the commutation relations,
the Schrodinger equation in five dimensions in the
phase space is constructed. With a proposed solu-
tion, the Schrédinger equation in the phase space
is restored to its non-covariant form in (3+1) di-
mensions. The explicitly covariant Pauli-Schrédinger
equation is derived in Section 5. We study a Galilean
spin 1/2 particle in a external potential, and the so-
lutions are proposed and discussed. In Section 6, the
final concluding remarks are presented.

2. Galilean Covariance

The Galilei transformations are given by
x' = Rx+ vt +a, (1)
t'=t+b, (2)

where R stands for the three-dimensional Euclid-
ian rotations, v is the relative velocity defining the
Galilean boosts, a and b stand for spatial and
time translations, respectively. Consider a free par-
ticle with mass m; the mass shell relation is given
by P? — 2mE = 0. Then we can define a 5-vector,
p = (pz, Py, Pz, m, E) = (p',m, E), with i = 1,2, 3.

Thus, we can define a scalar product of the type

Pupvg"’ = pipi — pspa — paps = P> —2mE =k, (3)

where g"” is the metric of the space-time to be con-
structed, e p,g"” = p*.

Let us define a set of canonical coordinates g*
associated with p*, by writing a five-vector in M,
¢ = (a,¢*,¢°), q is the canonical coordinate asso-
ciated with ]3; g* is the canonical coordinate associ-
ated with F/, and thus can be considered as the time
coordinate; ¢° is the canonical coordinate associated
with m explicitly given in terms of q and ¢?, ¢#q, =
q"q"nu = a* — ¢*¢® = s> = 0. From this ¢° = g—:, or
infinitesimally, we obtain d¢° = v§ 3. Therefore, the
fifth component is basically defined by the velocity.

720

That can be seen as a special case of scalar product
in G denoted as

(zly) = g" zuyy = > Tiyi — T4Ys — T5Ys, (4)
i=1
where z* = y* = ¢, 2° = g ey’ = % Hence, the
following metric can be introduced:
100 0 O
001 0 0
v) = . 5
) =001 0 0 )
000 -1 0

This is the metric of a Galilean manifold G. In the
sequence, this structure is explored in order to study
unitary representations.

3. Hilbert Space and Sympletic Structure

Consider an analytical manifold G, where each point
is specified by the coordinates g, with u =1,2,3,4,5
and the metric specified by (5). The coordinates of
every point in the cotangent-bundle T*G will be de-
noted by (qu,p,). The space T*G is equipped with a
symplectic structure via the 2-form

w=dg" Ndp, (6)

called the symplectic form (sum over repeated indices
is assumed). We consider the following bidifferential
operator on C*°(T*G) functions,

97 93 .
~ Jg+ 9p,  Op* dq,’

such that, for C° functions, f(q,p) and g(q,p), we
have

w(fA,gA) = fAg={f, g} (8)
where

_Of 09  Of 0Og
V9r = G om0 B, ©

It is the Poisson bracket, and fA and gA are two
vector fields given by hA = X;, = —{h, }.

The space T*G endowed with this symplectic struc-
ture is called the phase space and will be denoted by
T'. In order to associate the Hilbert space with the
phase space I', we will consider the set of square-
integrable complex functions, ¢(g,p) in I" such that

/dpdq o' (q,p)é(q,p) < o0 (10)
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is a real bilinear form. In this case, ¢(q,p) = (q, p|d)
is written with the aid of
| dvddla.p)anl = 1. (1)

where (¢| is the dual vector of |¢). This symplectic
Hilbert space is denoted by H(T).

4. Symplectic Quantum
Mechanics and the Galilei Group

In this section, we will study the Galilei group consid-
ering H(T") as the space of representation. To do so,
consider the unit transformations U:H(I') — H(T)
such that (i1 |¢9) is invariant. Using the A operator,
we define a mapping e'? = xI x I' — T called a
Moyal (or star) product and defined by

= <
f*g=f(q,p)eXpl;<a i 0 gﬂg(qm),

dq" Opu Op* Dqy

it should be noted that we used A = 1. The generators
of U can be introduced by the following (Moyal-Weyl)
star-operators:
~ i 0 i 0
F=flgpx=f|q¢"+-——p'—-—)

fla.p) f(q 29p," )
To construct a representation of the Galilei algebra
in H, we define the operators

~ i 0
pro= prr=pr— L2 12
P = S (12a)
= =gt L 0 (12b)
2 0pu
and
J/\ZL/J = MUO’*:@VﬁG‘_Q\UﬁV7 (12C)

where ]\//.TM and ]SM are the generators of homoge-
neous and inhomogeneous transformations, respec-
tively. From this set of unitary operators, we obtain,
after some simple calculations, the following set of
commutations relations:

{ﬁua]\/ipa} = _i(gupﬁa - guoﬁp)7
{13,“13,,} ~0,

and

5,.5.] -
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o~ o~ o~

= _i(gl/pMua - gulelo + gMO'MVp - g,wMup)-

Consider a vector ¢ € GG that obeys the set of linear
transformations of the type
' =G" q" + a". (13)

A particular case of interest in these transformations
is given by

g = R;qj +vigt 4+ af (14)
7=+ (19
) L

P =q¢ - (Rjq” )vi + §v2q4. (16)

In the matrix form, the homogeneous transformations
are written as

RY R, R: ©0
Ri Riz R23 111]2 0
G',=| R R R% 0?0 17
R (17)
UiRij ’UZ'Ri2 UiRig 5 1
We can write the generators as
Jo= endly, Co=1
i Qezﬂc jk> i 43 (18)
K; = Ms;, D= M.

Hence, the non-vanishing commutation relations can
be rewritten as

Ti, Ag} = iéijkjk, /;7[?]:| = Z'€ijkf(k,

_jz, Aj} = Zezyk6k7 _Ai, 6}-] = iaijﬁ + i€k Jk,

-ﬁ, Ai] = ZIAQ, Az,ﬁ} = i@,

:A4,ﬁ} =Py, Ji, Aj} = l%kﬁk, (19)
B, Aj] = i, P, P,Cy} — iy, Py,
[P&]=iP,  [B.G]=iP,

_f),fg} = iPs,

These relations have the Lie algebra of the Galilei
group as a subalgebra in the case of R3 x R, con-
sidering J; the generators of rotations K; of the pure
Galilei transformations, P, the spatial and temporal
translations. In fact, we can observe that Egs. (14)
and (15) are the Galilei transformations given by
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Eq. (1) and (2) with 2* = ¢. Equation (16) is the com-
patibility condition which represents the embedding

2
T:A—> A= (A,A4,A>; Acé& Acg.
24,

The commutation of K; and P; is naturally non-
zero in this context, so P; will be related to the
mass, which is the extension parameter of the Galilei
group or an invariant of the extended Galilei—Lie al-
gebra. So, the invariants of this algebra in the light
cone of the de Sitter space-time are

I, = P,P* (20)
I, = Py=-mI (21)
I3 = Wy, WE, (22)

where I is the identity operator, m is the mass,
Wy = %e#aﬁpl,Po‘MBp is the 5-dimensional Pauli—
Lubanski tensor, and €,,0, is the totally antisym-
metric tensor in five dimensions. In the scalar repre-
santation, we can defined I3 = 0. Using the Casimir
invariants I; and I and applying them to ¥, we have

PPV = kW,
P = —mU.

We obtain

1
<p2—ipV—4V2—k2>\Il=

) )
=2 <p4 - 28t> (ps - 265) v,

and a solution of this equation is

W = e o0 p(g)e 2ty (1) B (q, p). (23)
Thus,
2 . Lo 2) 1

D q)—sz(P—ZV <I>—k) 3=
= % (i x) (i05p) é,
which yields
i0yx = ax, and ids5p = Bp.
Thus, our solution for x and p is
X =e ot p= i (24)
722

Using the fact that

PU = (p4 - i3t> e iCpatalt — _pe—i(Zpata)t
2

and

ﬁ5\:[1 = (p5 — ;a5> e*i(2p5+ﬁ)q5 = —m e*i(2p5+ﬁ)q5’

we can conclude that

a=2E, [=2m. (25)

So, we have

L —ipv-tv?)e=(p+ i
om U TPV Ty - om)
which is the usual form of the Schrédinger equation

in the phase space for a free particle with mass m and
k2

5., that we can

with an additional kinetic energy of
always set as the zero of energy.

This equation and its complex conjugate can also
be obtained by using the Lagrangian density in the
phase space (we use d* = d/dg,,)

i .
L = 0"V (q,p)0¥*(q,p) + 529“[‘1’(61,19)8“‘1’ (¢,p) —

—U*(q,p)0"¥(q,p)] + [p’f“ = k2] v,

The association of this representation with the
Wigner formalism is given by

fula,p) = ¥(q,p)* ¥ (q,p),

where f,(q,p) is the Wigner function. To prove this,
we recall that Eq. (23) can be written as

ﬁuﬁ“\ll =p? % U(q,p).

Multiplying the right-hand side of the above equation
by ¥, we obtain

(p? % W) x UT = 20« O, (26)
But ¥« p? = k20T, Thus,

Uk (U % p?) = K20 » 0T, (27)
Subtracting (27) from (26), we have

p?* fu(g:p) = P* % fulq,p) =0, (28)
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which is the Moyal brackets {p?, fu}ar. In view of
Eq. (12a), Eq. (28) becomes

Pu9q, fu(q,p) =0, (29)

where the Wigner function in the Galilean manifold
is a solution of this equation.

5. Spin 1/2 Symplectic Representaion

In order to study the representations of spin-1,/2 par-
ticles, we introduce v* P, where P, = p, — % o in
such a way that, acting on the 5-spinor in the phase
space ¥(q, p), we have
7

o <pu - 26u> Y(p,q) = k¥ (p,q), (30)
which is the Galilean-covariant Pauli-Schrédinger
equation. Consequently, the mass shell condition is
obtained by the usual steps:

(v“P.) (7" B,)¥(q,p) = k2T (q,p). (31)
Therefore,

A#~Y(P,P,) = k? = P*P,. (32)
Since ]3#]3,, = ﬁ,ﬁ#, we have

%(v“v” +4"7")B,P, = P*P,, (33)
SO

{77} = 29" (34)

Equation (30) can be derived from the Lagrangian
density for spin-1/2 particles in the phase space,
which is given by

£ == (0,970 = T (49, W)) = (k= 7"p,) VT,

where ¥ = (UF, with( = —{* + 17} = (? _0’).
In the Galilean-covariant Pauli-Schrodinger equation
case, the association to the Wigner function is given
by fo = ¥ x U, with each component satisfying
Eq. (29).

Let us now examine the gauge symmetries in the
phase space demanding the invariance of the La-
grangian under a local gauge transformation given by
eMaP) W, This leads to the minimum coupling,

~

PV — (P, — A,V = <p# - %aﬂ - eAu) v,
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This describes an electron in an external field with
the Pauli-Schrédinger equation given by

['y” (pﬂ — %@L — eAM> — k] v =0.
In order to illustrate such result, let us consider a elec-
tron in an external field given by A, (A, A4, As), with

Ay = —¢ and A; = 0. Considering the representation
of the v* matrices

i (ot 0 +_ (00 5_ (0 —/2
’7_<0 _O.i>a’7_(ﬁ0)v'7—0 0 .
where o are the Pauli matrices, and V/2 is the iden-
tity 2 x 2 matrix multiplied by v/2. We can rewrite the

object ¥, as ¥ = (90), where ¢ and y are 2-spinors

(35)

dependent on z*;u = 1,...,5. Thus, in the represen-
tation where k = 0, the Eq. (35) becomes

o (p—;8q—eA><,0—\/§<p5—;85)X:07
. . (36)
\/§(p4—;8t—e¢>ga—0' (p—;aq—eA)Xzo.

Solving the coupled equations, we get an equation for
o and x. Replacing the eigenvalues of P, and Ps5, we
have

2m<cr(p—2q—e )) +ef
2m <U (p 271 ¢ >) e

These are the non-covariant form of the Pauli—
Schrédinger equation in the phase space independent
of the time with

v = FEp,

x = FEx.

fo =T W =ipxx" —ixxpl.
This leads to

> eB 1 s k2

T\t T2 T
where s = £1. It should be noted that the above
expression represents the Landau levels which show
the spin-splitting feature.

The above Figures 1 and 2 show the Wigner func-
tions for the ground and first excited states, respec-
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0.4

—0.2

—0.4

Fig. 1. Wigner Function (cut in g1,p1),Ground State

0.4

—0.2

—0.4

Fig. 2. Wigner Function (cut in g1,p1), First Excited State

tively, in the cut (q1,p1). These are the same solu-
tions known in the literature using the usual Wigner
method.

6. Concluding Remarks

We study the spin-1/2 particle equation, the Pauli—
Schrédinger equation, in the context of the Galilean
covariance, considering a symplectic Hilbert space.
We begin with a presentation on the Galilean mani-
fold which is used to review the construction of the
Galilean covariance and the representations of quan-
tum mechanics in this formalism, namely, the spin-
1/2 and scalar representations and the Schrodinger
(Klein—-Gordon-like) and Pauli-Schrédinger (Dirac-
like) equations, respectively.

The quantum mechanics formalism in the phase
space is derived in this context of the Galilean cova-
riance giving rise to the representations of spin-0
and spin-1/2 equations. For the spin-1/2 equation
(the Dirac-like equation), we study the electron in
an external field. Solving it, we were able to re-
cover the non-covariant Pauli-Schrédinger equation
in phase space and to analyze, in this context, the
Landau levels.

This work was supported by CAPES and CNPq of
Brazil.
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I. Illemponino, C. Vioa, A. Canmana

CUMIIJIEKTUYHA TEOPI ITOJIA
TAJIINIEEBO-KOBAPIAHTHUX CKAJIAPHOI'O
I CIIIHOPHOI'O ITPEACTABJIEHDb

Peszowme

Mu pmocaifizKyeMO KOHIIENIifo po3iupeHol rpynu [asises,
IesIKOTO IIPEACTABJICHHS [JIsi CHMILIEKTUIHOI KBaHTOBOI Me-
XaHIKM Ha MHOroBHAI §, 3aJaHOrO Ha CBITJIOBOMY KOHYCI
m’aTuBAMIpHOrO npocropy-dacy ne Cirrepa y ¢daszoBomy mpo-
cropi. Ilobynysano I'inbbepriB npocrip, HajieHuil cuMILIe-
KTUYHOIO CTPYKTYporo. Mu BuB4YaeMoO yHITapHi oneparopu, o
OIUCYIOTh IIOBOPOTHU i TpaHC/ALIl, reHepaTOpU SAKUX YTBOPIO-
oThb aarebpy JIi B G. Ile npejacraBieHHs TOPOXKY€E PIBHSAHHSA
IIpeniarepa (tumy Kasitna—Topmona) /st XBUIBOBOI DYy HKIIIT
y dazoBoMy IPOCTOPI, TaK 110 3MiHHI MAIOTh 3MICT ITOJIOXKEHHST
i siHitHOTO iMIyIbCY. XBUILOBI DYHKIIT TOB’ s13aH] 3 DYHKIHEIO
Biruepa uepes nobyrok Moiiasa, Tak 1mo XBuiboBi MyHKIIT pe-
MPEe3eHTYIOTh KBadiaMIutiTyay iiMoBipuocTti. Mu Oymyemo pis-
uauana [layni-Ilpeninrepa (tumy pisaannsa [lipaka) y daso-
BOMY IIPOCTOPi B sIBHO KoBapiauTHiit dopmi. Ha 3aBeprinenns
MM IIOKa3y€MO €KBIBAJIEHTHICTH MiXK II'ITUBHMIpHUM (popmaJi-
3MOM (pa30BOTO IPOCTOPY i 3BUYAiHUM (hOpPMaIiZMOM, IIPOIIO-
HYIOYH PO3B’fI30K, IO BiIHOBJIIOE HEKOBapiaHTHY (OpPMY piB-
usaHs [Tayni—IlIpeninrepa y dpazoBoMy mpocTopi.
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MODELS OF ELASTIC pp SCATTERING

AT HIGH ENERGIES —

POSSIBILITIES, LIMITATIONS,

ASSUMPTIONS, AND OPEN QUESTIONS

The simplest collision process, the elastic scattering of protons, has been measured at various
energies and in a broad interval of scattering angles. Its theoretical description is, however,
much more delicate, than it may seem at first glance. The widely used eikonal model allowed
one to analyze the pp elastic scattering data at an ISR energy of 52.8 GeV and the TOTEM
data at a much higher LHC energy of 8 TeV. The results represent the most detailed elabo-
rated impact parameter analysis of pp data which has ever been performed. They have helped
to identify several deeper open questions and problems concerning all widely used theoretical
frameworks used for the description of the elastic pp scattering. The problems should be further
studied and solved to derive some important proton characteristics which may be obtained with

the help of the elastic scattering.

Keywords: proton-proton collisions, elastic scattering of hadrons, eikonal model, Coulomb-
hadronic interference, central or peripheral scattering, impact parameter, WY approach.

1. Introduction

The elastic differential cross-section do/dt represents
a basic experimental characteristic established in the
elastic collisions of hadrons. If the influence of spins
is not considered then the ¢ (four momentum transfer
squared) dependence exhibits a very similar structure
in all cases of elastic scattering of charged hadrons
at contemporary high energies: there is a peak at
very low values of |¢|, followed by a (nearly) exponen-
tial region, and then there is a dip-bump or shoulder
structure at even higher values of |t| practically for
all colliding hadrons [1].

The measured differential elastic cross-section of
two charged hadrons (protons) is standardly descri-
bed with the help of the complete elastic scattering
amplitude FCN(s,t) as

do T 9
— = —|F : 1
T = 25 1Pl 1)

Here, s is the square of the total collision energy,
and p is the value of the momentum of one inci-
dent proton in the center-of-mass system. The Cou-

© J. PROCHAZKA, V. KUNDRAT,
M.V. LOKAJICEK, 2019
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lomb amplitude F€(s,t) is widely assumed to be
well-known from QED (except from electromagnetic
form factors). However, the t-dependence of the elas-
tic hadronic amplitude FN(s,t) is yet not fully known.
The elastic scattering of two protons is kinematically
the simplest collision process, but its description is
not satisfactory in many aspects.

The description of the Coulomb-hadronic interfer-
ence proposed by West and Yennie (WY) [2] in 1968
was widely used for the analysis of experimental data
in the era of the ISR. However, several problems
and limitations in the given model were identified
later. This approach is discussed in sect. 2. The de-
scription is not usable for a reliable data analysis. It
has, however, negatively influenced many recent mod-
els of elastic hadronic scattering. To overcome these
problems, another approach based on the eikonal
model framework has been developed. The results
of analysis of experimental data using the eikonal
model (under different assumptions) are summarized
in sect. 3. The list of deeper open questions and prob-
lems identified in all contemporary descriptions of the
elastic scattering is presented in sect. 4. Concluding
remarks may be found in sect. 5. This paper very
briefly summarizes the results obtained and discussed
in more details in [3,4].
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2. Approach of West and Yennie
In 1968, West and Yennie [2]| derived for the complete

amplitude the following simplified formula:

as .
F%;N(s,ﬂ = iTGl (t)G2(t) elad(st) +

o.tot,N(S)

1 PVs(p(s) +1) P2, (2)

+

where (see also Locher 1967 [5])

woto) 5 i () 1] o

Here, « = 1/137.036 is the fine structure constant,
~v = 0.577215... is the Euler constant, G () and Ga(t)
are the electric dipole form factors (being put into for-
mula (2) by hand at the very end of the whole deriva-
tion for point-like particles). The quantity ot°®N is
the total cross-section given by the optical theorem:
4T N
Vs Tm P
The simplified formula (2) was used widely mainly
in the era of the ISR for the determination (often
very misleadingly called a measurement) of three free
parameters: "N quantity p(t = 0), and diffrac-
tive slope B(t = 0). However, in the derivation of
Eq. (2), two very strong assumptions concerning the
t-dependence of the elastic hadronic amplitude were
assumed to be valid at all kinematically allowed val-
ues of t:
1. t-independence of the phase of FN(s,t), i.e., the
quantity

p(s,t) =

tot,N(S)

=0). (4)

g

Re FN(s,t)
Im FN(s,t) (5)

was assumed to be t-independent;
2. purely exponential t-dependence of |FN(3, t) |7
i.e., the diffractive slope defined as

do™

2
i 0|~ ey 7

(6)
was assumed to be t-independent.

It has been shown in [6] that the first assumption
must be valid otherwise the relative phase ¢(s,t) be-
comes a complex function, which would lead to a con-
tradiction (the relative phase has been defined as a
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real function [2]). The second assumption is in con-
tradiction to the observed dip-bump structure in mea-
sured do /dt data. Several other limitations and prob-
lems in the derivation of the simplified formula (2)
or its application in the forward region were iden-
tified later, see [3, 7] for corresponding details and
further references. The approach of WY is inapplica-
ble for the reliable analysis of experimental data. Ma-
ny recent models of elastic hadronic amplitude have
been negatively influenced by the simplified formula
(2). The models have been typically constrained by
the values of o*°“N_ quantity p(t = 0), and B(t = 0)
determined on the basis of the simplified formula,
even though they have corresponded to the strongly
t-dependent quantities B(t) and p(t). The measured
differential cross-section data have been, therefore,
described inconsistently.

3. Eikonal Model Approach
3.1. Theoretical background

In order to avoid (some of) the discrepancies and limi-
tations related to the simplified WY formula, another
approach to the description of the Coulomb-hadronic
interference based on the eikonal model was proposed
in 1994 by Kundrat and Lokajicek [8]. This widely
used theoretical framework allowed one to derive a
more general formula for the complete elastic scatter-
ing amplitude valid for any t-dependence of the phase
and modulus of FN(s, ) at a given (high) collision en-
ergy /s and any value of t:

FON(s,1) = £22GZ(0)+FN (s, D[1FiaG(s, 1), (7)

where

G(s,t) = /0 dt/ {m <tt/> % [G2(t)] —

_ % [m _ 1] I(t,t’)}, (8)
and

2m
I(t,t") = /d@”G

0

a(t”).
t )

(9)

here, t” = t + t' + 2v/tt’ cos . The upper (lower)
sign corresponds to the scattering of particles with
the same (opposite) charges. G2 is the effective form
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factor squared reflecting the electromagnetic struc-
ture of colliding protons and was introduced in [9] as

1
1+7

t
4m?2’

Geg(t) = [GE(t) + 7 GR(1)], 7=~ (10)
where Gg and G stand for the electric and magnetic
form factors, and m is the proton mass. The interfer-
ence formula given by Eq. (7) allows one to study the
t-dependence of the elastic hadronic amplitude and
corresponding b-dependent properties consistently in
the whole measured ¢ range.

The b-dependent characteristics of pp collisions are
standardly analyzed with the help of the Fourier—
Bessel transform. It should be, however, consistent
with a finite allowed region of the variable ¢ and finite
collision energies [10] (which is often not respected
at all)

hel(s,b) = hi(s,b) + ha(s,b) =

tmin

! FN(s,t)Jo(byv/—t)dt +

T )

/ FN(s, 1) Jo (bV/=F)dt. (1)

tmin

4p\f

In this case, the unitarity equation in the b-space is

Im hy(s,b) = |h1(s,b)|* + g1(s,b) + K(s,b). (12)
Here, g1 (s, b) is a real inelastic overlap function which
has been introduced in a similar way as the complex
elastic amplitude in Eq. (11). The complex function
hi(s,b) and real functions g1(s,b) oscillate at finite
energies. The oscillations can be removed, if a real
function ¢(s,b) = —Im ho(s,b) fulfilling some mathe-
matical conditions is added to both sides of the uni-
tarity equation (12) [3]. It is then possible to define,
at finite energies, the total, elastic, and inelastic pro-

file functions DX (s,b) (X=tot, el, inel)

D®(s,b) = 4|h1(s,b)|?, (13)
D™*%(s,b) = 4 (Im hy(s,b) + c(s,b)), (14)
D™l(s,b) = 4 (g1(s,b) + K(s,b) + c(s,D)) (15)

and rewrite the unitarity condition in the b-space as

D¥*(s,b) = D®(s,b) + D™°(s,b). (16)
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These profile functions (sometimes called overlap
functions) represent main b-dependent characteris-
tics. They are used to define the root-mean-squared
impact parameter /(b?)* corresponding to the total,
elastic, or inelastic hadron collisions.

Nearly all contemporary models of elastic hadron
scattering a priori strongly constrain the elastic
hadronic amplitude FN(s,t) from the very beginning
without sufficient reasoning, by requiring

1. dominance of the imaginary part of FN(s,t) in
a quite broad interval of ¢ in the forward region close
tot = 0;

2. vanishing of the imaginary part of FN(s,t) at
(or around) the dip ¢ = t4;p (Wrongly reasoned as a
consequence of the minimum of do/dt at tg;p);

3.values of o'°%N] B(t = 0) and p(t = 0) (of-
ten misleadingly denoted as “measurement”) obtained
from the simplified WY formula;

4. change of a sign of the real part of FN(s,t) at
“low” values of |t| (motivated by Martin’s theorem
[11] derived under certain (asymptotic) conditions).

The corresponding t-dependence of FN(s,t) (its
phase) is strongly constrained by these requirements.
It may be shown that mainly the first requirement
leads to the central behavior of elastic collisions cor-
responding to \/(b2)¢! < \/(b2)in¢l. The structure of
protons which would correspond to this behavior has
never been sufficiently explained.

One may, therefore, ask if it is possible to obtain
a description of data which would lead to the periph-
eral behavior of elastic collisions /(b2)el > /(b2)inel
(without imposing the unreasoned constrains above).
It was shown in 1981 [12] that the peripheral solu-
tion of the scattering problem may be obtained, if
the hadronic phase has specific t-dependence.

3.2. Analysis of Measured Data

One may try to determine FN(s,¢) on the basis of
experimental data under a given set of assumptions
(constraints) and to study their impact on values of
determined hadronic quantities. The eikonal interfer-
ence formula given by Egs. (7) to (9) may be used to
subtract the Coulomb effect from the measured elas-
tic pp do/dt data at a given energy. The analysis of
experimental elastic data in the full measured region
of ¢ values with the help of Egs. (7) to (9) (with ei-
ther effective electric or effective electromagnetic pro-
ton form factors determined from the ep scattering)
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Comparison of several hadronic quantities

characterizing the pp elastic scattering at energies of 52.8 GeV and 8 TeV

Particle types PP PP PP PP

Vs [GeV] 52.8 52.8 8000 8000

Fit 1 2 1 2

Case central peripheral central peripheral
p(t =0) 0.0763 & 0.0017 0.0827 + 0.0016 0.122 & 0.018 0.149 + 0.016
B(t = 0) [GeV2] 13.515 & 0.035 13.444 4 0.036 21.021 + 0.085 20.829 + 0.055
ot N [mb)] 42.694 + 0.033 42.861 + 0.034 103.44 £ 0.35 104.12 £ 0.31
N [mb)] 7.469 7.539 27.6 28.0
oiel [mb] 35.22 35.32 75.9 76.1
b N /gtot,N 0.1750 0.1759 0.267 0.269
doN/dt(t = 0) [mb.GeV 2] 93.67 94.51 555 566
V/(b2)tot [fm)] 1.026 1.023 1.28 1.27
V(BT [fm] 0.6778 1.959 0.896 1.86
V/(b2)inel [fm)] 1.085 0.671 1.39 0.970
Dot (b = 0) 1.29 1.30 2.01 2.04
Db = 0) 0.530 0.0342 0.980 0.205
D»el(b = 0) 0.762 1.27 1.03 1.84

requires a convenient parametrization of the complex
elastic hadronic amplitude, i.e., of its modulus and
phase:

FN(s,t) =1 |FN(s,t)| i (s,t) a7
The modulus can be parametrized as

0] = 01+ a0

+ (c1 + cat) ed1t+d2t2+d3t37 (18)

and the phase can be parametrized as

K

Ns,t)=¢+ G e’ to=1 GeVZ (19)

t
to
This parametrization of the phase allows very differ-
ent t-dependences according to the values of free pa-
rameters. It allows a rather fast increase of (N (s,t)
with |¢|, which is inevitable for increasing the value
of \/(b2)e! (for details, see, e.g., [3,7,8,12,13]). All
parameters specifying the modulus and phase of the
elastic hadronic amplitude FN(s,t) may be energy-
dependent. The parameter x needs to be chosen as a
positive integer to keep the analyticity of FN(s,t).
Many fits of measured differential cross-section at
52.8 GeV [14] and 8 TeV data [15] under different
additional constraints have been recently performed

728

in [3] (see also [7]). Table shows two fits at each en-
ergy. Fit 1 corresponds to the widely imposed require-
ments on FN(s,t) in many models of elastic scatter-
ing discussed in sect. 3.1. This leads to the central
behavior of elastic collisions. Fit 2 corresponds to the
peripheral picture of elastic collisions, and it has been
obtained without imposing the strong and unreasoned
constraints. The b-dependent profile functions given
by Egs. (13) to (15) corresponding to Fit 1 (central)
and Fit 2 (peripheral) at an energy of 52.8 GeV are
plotted in Figure.

The impact of a choice of the form factor (ef-
fective electric or effective electromagnetic one) has
been found to be negligible or very small. The t-
dependence of the hadronic phase (™ (s,t) has, how-
ever, a fundamental impact on the character of col-
lisions in the b-space. In a central case, relation
V(B2 < (/(b2)tot holds. But, in the peripheral al-
ternative, the relation is reversed. It may be also in-
teresting to note that Martin’s theorem [11] is ful-
filled in the central, as well as peripheral, alternative
(at both energies).

4. Open Questions and Problems

We have reviewed many (all widely discussed) his-
torical and contemporary models concerning the de-
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b [fm]

(a) central case — Fit 1

b [fm]
(b) peripheral case — Fit 2

Proton-proton profile functions D (b) at an energy of 52.8 GeV. Full line corresponds to the total profile function, dashed line to

the elastic one, and dotted line to the inelastic one

scription of elastic collisions and performed various
fits of data under different conditions in order to bet-
ter understand the processes with strongly interact-
ing particles. On the basis of these studies, we have
identified some deeper problems and open questions
in all models and theoretical frameworks used in the
description of the elastic scattering:

1. Coulomb interaction and experimental condi-
tions;

a) (non-)divergence at t = 0

b) multiple collisions

¢) electromagnetic form factors

2. Different mechanisms of Coulomb and strong
forces;

3. Different types of short-ranged (contact) inter-
actions;

4. Properties of the S matrix and the structure of
a Hilbert space;

5. Optical theorem;

6. Determination of the b-dependent probability
functions of hadron collisions;

7. Distribution of elastic scattering angles for a
given value of the impact parameter;

8. Increase in the integrated total, elastic, and in-
elastic cross-sections and the dimensions of colliding
particles in dependence on the collision energy;

9. extrapolations outside measured regions.

The identified open problems 1-7 were published
in [4]. One may find there also the historical context
concerning the dependence of proton collisions on the
impact parameter, which is not widely known. Prob-

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

lems related specifically to the derivation of the op-
tical theorem in particle physics are discussed in
[16]. Open questions 8 and 9 are discussed in [3].

5. Conclusion

The simplified WY formula given by Eq. (2) and (3)
was used widely in the era of the ISR for the analysis
of experimental data. Determined values of o'°%N],
B(t = 0), and p(t = 0) (at a given collision energy)
on the basis of this model have often been denoted
misleadingly as “measurement”. Many problems and
limitations in the derivation of the formula, as well
as in its application to data, have been identified,
see sect. 2. The WY approach should be, therefore,
abandoned in the era of the LHC, as it may lead to
wrong physical conclusions. It should not be used for
constraining the hadronic models based on assump-
tions inconsistent with the assumptions used in the
derivation of a simplified WY model. One should look
for the other description of the elastic scattering of
(charged) hadrons.

The eikonal model approach is more general
and relevant for the analysis of elastic scattering
data at the present time, than the (over)simplified
WY model. The former allows one to study the ¢-
dependence of the elastic hadronic amplitude and
corresponding hadronic quantities. It is more funda-
mental than the other contemporary models of elastic
scattering as it may be used for the description of the
Coulomb-hadronic interference and to consider the
dependence of collisions on the impact parameter (in
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order not to mix collisions corresponding to different
values of the impact parameter). We have analyzed
elastic scattering data at 52.8 GeV and 8 TeV with
the help of the eikonal model under different assump-
tions consistently in the whole measured t-range to
see the impact on values of different physical quanti-
ties, see sect. 3.

This analysis of elastic scattering data with the
use of the eikonal model approach has been prepared
for the analysis of TOTEM data at the LHC. The
first measurement of elastic differential pp data at
the LHC energy of 8 TeV in the Coulomb-hadronic
region published by TOTEM [15] contains the first
analysis of the 8 TeV data using the eikonal model
approach.

The results of our analysis (see sect. 3 and [3, 7]
for more details and further references) represent the
most elaborated impact parameter analysis of elastic
pp collision data which has ever been performed. On
the basis of our results, it may be concluded that
the transparency of protons during elastic collisions
(derived in widely used models of elastic pp scat-
tering) has been based on unreasoned and unnec-
essary assumptions; the corresponding structure of
protons has never been sufficiently explained in the
literature. It is possible to say that there is no ar-
gument against the more realistic interpretation of
elastic processes being peripheral and the protons re-
garded as rather compact (non-transparent) objects
during elastic collisions.

We have reviewed basically all publicly available
descriptions (models) of elastic hadron scattering over
many years. Several deeper problems and open ques-
tions in all contemporary theoretical approaches (this
includes WY model, eikonal model, Regge-based ap-
proaches, QCD-inspired approaches, ...) have been
identified, see sect. 4. The proper analysis of hadron
collisions in dependence on the impact parameter may
provide an important insight concerning the shapes
and dimensions (and other properties) of colliding
particles, which can be hardly obtained in a differ-
ent way. However, one should carefully study the as-
sumptions involved in any collision model and test
the consequences. It is also necessary to solve all
the known fundamental problems and open questions
in any contemporary description of the elastic pp
scattering before making the far-reaching conclusions
concerning the structure and properties of collided
particles.
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Further comments and new ideas how to move for-
ward may be found in [4, 17]. The more fundamental
analysis of the whole contemporary state of funda-
mental physical researches has been recently sum-
marized in [18]. It has been argued that, to make
progress in physics, one needs to return to causal on-
tology and falsification approach (i.e., the logic and
systematic analysis of involved assumptions). In our
opinion, our results may be important for new trends
not only in high-energy physics, but in physics in
general.

We would like to thank to the organizers, especially
to L. Jenkovszky, of the “New Trends in High-Ener-
g9y Physics” conference which took place in Odessa
(Ukraine) in May 12-18 (2019) for the opportunity
to present and discuss the achieved results.
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I Ipoxasxa, B. Kyndpam, M.B. Jloxaiuex

MO/IEJII IIPY?KHOI'O pp-PO3CISIHHSI —
MOYKJIUBOCTI, OBMEKEHHST TA [IUTAHHS

PesmowMme

Haitpocrimuit nporec 3iTKHEHb, a caMe IpYy»KHe PO3CisHHs
IPOTOHIB BUMIpPIOBAJIOCH IIPU PIi3HUX EHEPrifAX Ta IIHPOKOMY
inTepBasi KyTiB poscismmsa. Bigmosimuwmit Teopermunwmii omuc,
o/lHaK, HabaraTo JesiKaTHIINA, HiXK MoxKe 3maBarucd. 11lu-
POKO Bimoma eHMKOHAJbHA MOZEIb AO3BOJINJIA IIPOBECTH aHa-
JIi3 NpPYXKHUX Pp-JAHUX IPH €Hepriax mnpuckoposadis ISR,
52,8 T'eB ta LHC 8 TeB. Hami pesynbprarsi IpeicTaBiIsiOTh
HalileTaIbHIIINI Ta PETEJILHO ONPAIlbOBAHUN IPUIIJIBHUN aHa-
J1i3 pp-KaHux. BoHU JOIIOMOIIN IPOSICHUTHU PsiJt IUTaHb Ta IPO-
6JieM OIKCY HPY>KHOIO PO3CistHHs poToHiB. 1fo mporpamy mo-
TPiOHO TPOIOBXKUTH.
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MULTIPARTICLE FIELDS
ON THE SUBSET OF SIMULTANEITY

1. Introduction

We propose a model describing the scattering of hadrons as bound states of their constituent
quarks. We build the dynamic equations for the multiparticle fields on the subset of simul-
taneity, using the Lagrange method, similarly to the case of “usual” single-particle fields. We
then consider the gauge fields restoring the local internal symmetry on the subset of simul-
taneity. Since the multiparticle fields, which describe mesons as bound states of a quark and
an antiquark, are two-index tensors relative to the local gauge group, it is possible to consider
a model with two different gauge fields, each one associated with its own index. Such fields
would be transformed by the same laws during a local gauge transformation and satisfy the
same dynamic equations, but with different boundary conditions. The dynamic equations for
the multiparticle gauge fields describe such phenomena as the confinement and the asymptotic
freedom of colored objects under certain boundary conditions and the spontaneous symme-
try breaking under another ones. With these dynamic equations, we are able to describe the
quark confinement in hadrons within a single model and their interaction during the hadron
scattering through the exchange of the bound states of gluons — the glueballs.

Keywords: multiparticle fields, problem of simultaneity in relativistic quantum theory,
confinement of quarks and gluons, Higgs mechanism, energy-momentum conservation law in
hadron processes.

partially explained our viewpoint in the previous arti-
cle [12]. The use of multitime probability amplitudes

Probably for the first time, the idea of multiparti-
cle fields was proposed by H. Yukawa [1-3|. H. Yuka-
wa called these fields “nonlocal” fields. We use an-
other term “multiparticle fields” to show the differ-
ences between our model from the model proposed
by H. Yukawa. The most essential difference between
the proposed model from not only the Yukawa model,
but also from models on the light cone [4, 5], quasi-
potential models [6-8], and models with multitime
probability amplitudes [9-11] is that, in our opinion,
the internal variables of such fields in different iner-
tial reference systems cannot be related to each other,
whereas these variables are connected by Lorentz
transformations in the said models. We have already
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in [9-11,13-15], other works of this direction, and the
above-mentioned works contradicts the principles of
quantum theory, because it does not consider, in our
opinion, the measuring instrument influence on the
state of a microsystem. In more details, we explain
it in work [16], where we proposed an alternative
approach to ensuring the simultaneity of quantum-
mechanical measurements in different reference sys-
tems, and introduce a subset of simultaneity of the
Cartesian product of several Minkowski spaces. On
the other hand, the existing field theories are con-
sidered in such a way that all interaction effects are
reduced only to changes in the occupation numbers of
the single-particle states of free particles. This leads
to the fact that, in such models, when the dynamics
of processes is described, the sum of energy-momenta
of these one-particle states is conserved. At the same
time, the energy-momentum of hadrons, but not of
constituent particles, must be conserved for the pro-
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cesses with hadrons. The model of multiparticle fields
on the subset of simultaneity proposed in this article
allows us to construct a dynamic description, which
is free of the mentioned problems.

2. Scalar Product on a Subset of Simultaneity

Let us consider a meson as a two-particle system con-
sisting of the constituent quark and antiquark. The
time and coordinates of the Minkowski space of the

first particle will be denoted (x?l),xél),x%wm?l))’

for the second particle (m(()Q), Jcé), xé), I?z))' Here, as
usual, the index 0 denotes the time coordinate of
the event, and 1,2,3 are the spatial coordinates. The
lower indices in parentheses identify the first and
second particles. The parentheses are used to distin-
guish these indices from the covariant coordinates
of the event. The upper indices are used to de-
note contravariant coordinates. The Cartesian prod-
uct of Minkowski spaces for two particles is an eight-
dimensional linear space. Its elements can be consid-
ered as columns

x?l)
X 1)
X 1)
X 1)
LL‘P)
X 2)
X 2)
Z(2)

We introduce a scalar product in this
dimensional space by the following expression:

eight-

(2l2) = 3

5 (Oa8tyyrly + abi oy ol). @

Here, gg/{)i’“c is the Minkowski tensor. The indices a
and b are repeated and summed up, and each of these
indices takes the value of 0,1,2,3. Then it is conve-

nient to use the Jacobi coordinates
a 1 a a a a a

In view of (3), the expression for a scalar product (2)
takes the form

: 1
(le) = gt (30 + o). ()

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

A condition for the subset of simultaneity in coordi-
nates (3) reads

y’ = 0. (5)

The coordinates of a point on a subset of simultaneity
are denoted by a seven-component column

We define the scalar product on a subset of simultane-
ity so that it coincides with product (4) with regard
for condition (5):

(qlg) = gabq“q", (7)
where the metric tensor is
1 0 0 0 0O 0 O
0-1 0 0 0 O O
00 -1 0 0 0 O
g*=10 0 0 -1 0 0 O (8)
00 0 0 —4 0 O
00 0 O 0 -4 0
00 0 O O 0 —4

The multiparticle field will be described by a set of
field functions ¥, (¢) = ¥, (X,y). Here, X is a set of
coordinates X, X', X2, X3, and y is a set of internal
variables y*, 2, y3. The index a enumerates different
components of the field, and its range space is de-
termined by the representation of a transformation
group, which describes the transition from field func-
tions relative to one reference system to field func-
tions relative to another reference system. The group
of matrices acts on a subset of simultaneity as follows:

A A9 A A O 0 0O
AL AL AL AL O 0 0
A2A2A2A2 0 0 0
A3 A3 AR AR O 0 of (9)
0 0 0 0 R' R, R}
0 0 0 0 R? R2 R?
0 0 0 0 R} RS RS

Q)
I

The indices of the G} matrix take the values from 0 to
6. Af,a,b=0,1,2,3 are the elements of the Lorentz

733



D.A. Ptashynskiy, T.M. Zelentsova, N.O. Chudak et al.

transformation matrix, and R{,a,b = 1,2,3 are the
elements of the rotation matrix.

The scalar product (7) with the metric tensor (8)
is invariant relative to the group transformations (9).

Hence, our further aim will be to construct a quan-
tum field theory not on the Minkowski space with
the Lorentz group, but on the above subset of simul-
taneity with group (9). In work [16], we show that
if the Minkowski space is replaced by a subset of si-
multaneity and the Lorentz group is group (9), then
such a theory can be constructed in the same way as
a “usual” one-particle field theory. At the same time,
such a model conforms to the principle of relativity.

3. Lagrangian of a Two-Particle Meson Field

We use the notation v, 1.5, (¢) for a two-particle
meson field, which describes, after the quantization,
the processes of creation and annihilation of bound
states of a quark and an antiquark. Here, ¢ is a set
of seven variables (6). Indices with subindices 1 and 2
correspond to an antiquark and a quark, respectively,
c1 is the color of an antiquark, and cs is the color of
a quark, fi is the flavor of an antiquark, and f5 is a
flavor of a quark. Accordingly, the field ¥¢,c,, 11,7, (¢)
takes the value, for which the mixed tensor represen-
tations of the SU, (3) and SUy (3) groups are realized:

wlcwz,fl 2f2 (q) =

— 2OF 0 N ()

c1c3 Ycacy uf1f3 ufgf4 1/}6364,]“3’]04 (q>' (10)

Here, uéi)% are the elements of an arbitrary matrix
of the SU. (3) group and u(ff }4 are elements of an inde-
pendent matrix of the SU; (3) group. A sign 1 is used
to denote the elements of the adjoint matrix. Dupli-
cate indices usually mean the summation. The dy-
namic equations for the field v ¢, ., (¢) must be
symmetric relative to transformations (10).

Moreover, the dynamic equations must be sym-
metric relative to group (9). The simplest Lagrangian
that generates such equations can be written in the
form

ab aw2102,f17f2 (9) awcl@»fl,fz (q) -
dq° dqP
_Miw;cQ,fl,fg (Q) wc162,f1’f2 (Q) (11)

Here, g?° are the tensor components (8), and the term
M,, will be considered as the “bare” meson mass. The
“real” meson mass was considered in [16].
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LO) — g

Since the field e, ¢,.f,.f, (¢) must describe the dy-
namics of the bound states of a quark and an anti-
quark, Lagrangian (11) is obviously incomplete, be-
cause it does not involve the interaction between
a quark and an antiquark, which ensures the exis-
tence of a bound state. As usual, such an interac-
tion can be introduced, if we demand the symmetry
of the Lagrangian relative to the local transforma-
tions of the internal symmetry in the form (10). Since
the existence of a meson as a bound state of the
quark and the antiquark is due to the strong inter-
action, we choose the symmetry relative to the lo-
cal SU, (3)-transformations. This symmetry can also
be achieved in the usual way, if we will replace the
“ordinary” derivatives in Lagrangian (11) by the co-
variant derivatives and will introduce the correspond-
ing compensating fields AE},; (¢) and Agzl (q).

Further, instead of these fields, it would be conve-
nient to consider their linear combinations, similarly
to Jacobi variables,

1
AL (@) = 5 (AL, (@ + A2, (@)
A (q) = AD) () — AL (q).

g1 a,g1 a,g1

(12)

Alocal SU, (3) group representation is given for the
domain of values of the field functions ©c,c,,f,,f, (9)-
So, this domain may be decomposed into a direct sum
of subspaces which are invariant relative to transfor-
mations of this representation. Since the hadron is
colorless, we will be interested in a field that has
a nonzero projection only on a subspace, on which
a scalar irreducible representation is realized. This
means that the field ¥¢,c,,7,, 7. (¢) can be given as

= 66162’(/}f17f2 ((]),

where ¥y, ¢, (¢) are the new field functions for the dy-
namical equations, which should describe, after the
quantization, the processes of creation and annihila-
tion of mesons. These dynamic equations can be ob-
tained from the Lagrangian with covariant derivatives
that is formed, if we substitute (13) with regard for
notation (12). After these transformations, this La-
grangian takes the form

Ly =3g" 0475, 1,(0)/04%) 0y, .7.(2)/0¢") +
+V()V} 1 (@Yg 1. (0) —

- 3Mi¢;1,f2 (Q)ql}fl,fz (C])7
ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

/(/)31027f1af2 (q) (13)
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where

V(g) = 29°9™ A (q) AL (q)-

a,g1 b,g1 (15)
4. Dynamic Equation for the Field V (q)

In order to obtain the dynamic equations for a two-
gluon field, we consider the simplest tensor that can
be formed from single-gluon fields

Aabanaz (@) = 9* (A, (@) AL, (@), a,b=14,5.6.
(16)

Extending the linear space of the tensors Agp 4,4, (¢)

relative to group (9) into the direct sum of invari-

ant subspaces, we pick a term corresponding to the
projection on a scalar subspace

Aab,g1g2 (q) = _A9192 (Q) Gab + oo (17)

Convolving both sides of equality (17) with the metric
tensor g°, we obtain

Agyg, (@) é 2 Z ( b91 bg)2 (Q))

Then we apply a similar procedure for internal in-
dices. Considering the coupling equations obtained in
[16] and definition (15), we get

Aglgz (Q) =A (Q) 59192 + ..
_ 1oy 4
9) =179 ;( bg (0)

The kinetic part of the Lagrangian for the A, 4, (¢)
field can be given as

(18)

L(O) 1gab aAglgz (Q) aAglgz (Q) _
¢ 2 0q° dqb
1

Aglgz (q )A91g2 (q)- (20)

Replacing ordinary derivatives by covariant ones
and performing some calculations described in [16],
we obtain the Lagrangian

1,0V (q) 9V (q)

Lv = 29 dq®  I¢b
F2V (@)~ SMEV @) (21)

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

Having a Lagrangian for the field V (¢), we can
obtain a dynamic equation for this field such as the
Euler—Lagrange equation:

a9V () 9 9 2

9q°0q" - MgV (q) + §(V (q))

= 0. (22)

We introduce the function V (g)
regard for (6)) in the form

=V (X,y) (with

V(X,y)=W({y)+W (X)),
Vl (Xay) = V(va) - VO (Y)

Then the function V; (y) , will enter the complete La-
grangian as the potential energy of interaction of non-
relativistic constituent quarks. At the same time, it
will satisfy the equation

(23)

1AV ()~ M2V (y) — (% (1) =0, (24)

Analyzing the properties of the solutions of
Eq. (24), we can obtain information about the in-
teraction potential for quarks. Before analyzing these
properties, we will make this equation to be dimen-
sionless.

Let us introduce the dimensionless internal coordi-
nates r, dimensionless glueball mass m¢, and dimen-

sionless potential energy u (r):

=lIr, Mg = l_lmc,

(25)
Vo (y) = Vo (Ir) = I %u (x).
Then, instead of Eq. (24), we obtain
A (r) — mZu (r) — g(u ()2 = 0. (26)

Here, A, = 22:1 %i)? is the Laplace operator in
dimensionless variables r

We now consider the properties of a spherically
symmetric solution of Eq. (26). In order to transform
the variables r (rl, r2, r3), we pass to spherical coor-

dinates and make the standard replacement
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Fig. 1. Results of the numerical calculation of the dimension-
less inter-quark potential u (r) as a function of the dimension-
less distance r for C = 1.1, m%/9 = 0.1

-6 ca b b b b b b b

-8

~10- L

u(r)

Fig. 2. Results of numerical calculations of the dimensionless
inter-quark potential u (r) as a function of the dimensionless
distance r for C = —15.5, mZ,/9 = 8.7

In order to analyze the properties of solutions of
Eq. (28), we use an analogy with classical mechan-
ics. We will consider the independent variable r as
an analog of the time. We will call the quantity x a
“coordinate”. Let its first derivative dy/dr be a “ve-
locity,” and let the second derivative d?y/dr? be an
“acceleration”. The dependence of “acceleration” on
“coordinate”, which is determined by the right part
of Eq. (28), leads to the fact that, on the coordi-
nate plane (r,x), there are three domains [16]. In-
side each of them, the “acceleration” has a constant
sign. So, if the graph x (r) gets into one of these
three selected domains, then the following path of
this graph is determined by the corresponding sign of
the “acceleration”.

Let us establish the boundary conditions for the
function x (). We can see from Eq. (27) that if we
want to obtain the finite potential energy u (r) for all
finite values r, we should fulfill the condition

X (T)|T:O = 0 (29)
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At that, the “initial velocity” should not be equal to
zero, and we can set it to a certain real number:

dx (r)
dr

=C, CeR.

r=0

(30)

We now consider the properties of a solution of
Eq. (28) depending on the selection of the value C.

Let the solution satisfy the boundary conditions
(29) and (30) with C' > 0.

In Fig. 1, we see that, as r increases, the inter-
quark potential wu (r) tends to infinity. Consequent-
ly, the considered model describes the quark con-
finement.

If C < 0, the potential u (r) tends to some negative
constant value. Thus, the eigenvalue of the squared
internal Hamiltonian will definitely be negative. Since
this eigenvalue is a coefficient at the squared field de-
scribing the bound state of two gauge bosons, this
corresponds to the mechanism of spontaneous sym-
metry breaking. In this case, the result of numerical
calculations of the u () dependence on r is presented
in Fig. 2.

5. Conclusions

In the proposed model, the strong interaction be-
tween the quarks in hadrons can be caused by the
exchange of the bound states of gluons — the glue-
balls. The field V (X,y), according to glueballs, can
be represented as a sum of two terms,Vp (y) and
V1 (X,y). The field V4 (y) is not quantized and de-
scribes the strong interaction of quarks and gluons
inside mesons and glueballs. This field satisfies the
dynamic equation which describes the confiment of
quarks and gluons under certain boundary conditions
and spontaneous symmetry breaking — under another
ones. When the bare mass of a glueball has a zero
value, all solutions of this equation, irrespective of the
boundary conditions, will lead to the confiment. The
field V7 (X,y) can be quantized. Though we did not
consider the quantization procedure for multiparticle
fields in this work, it is not different from the proce-
dure described in work [17]. The operators obtained
after the quantization will describe the processes of
creation and annihilation of glueballs, as shown in
[17]. Accordingly, the considered meson field quanti-
zation leads to the operators of creation and annihila-
tion of the mesons. The meson interaction due to the
interaction of constituent quarks can be described as

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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the exchange by scalar glueballs. This approach dif-
fers from the one-particle field approach, because, in
our model, the energy-momentum conservation law
holds true precisely for hadrons, and not for the con-
stituent particles.
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BATATOYACTIMHKOBI I1OJIA
HA IIIMHOXKIMHI OJJHOYACHOCTI

PesmwowMme

B pobori mponoHyeTbcst MOJI€Nb Ui OIKUCY IPOIECiB PO3cisi-
HHSI TaJPOHIB sIK 3B’SI3aHUX CTaHIB KOHCTUTYEHTHHX KBapKiB.
Ha nigMHOXKUHI OJTHOYACHOCTI PO3IJISiIAETHCS TOOYI0BA IMHA~
MIiYHHUX PiBHSIHB JJIst 6araToO4YaCTUHKOBUX IIOJIB 3a JIOIIOMOT'OIO0
Merony JlarpaHka, aHAJIONIYHO TOMY, SIK 1€ POOUTBHCS JIJIs
“3BuuafiHuX”’ OJHOYACTHMHKOBUX IOJiB. Po3risiHyTo KaJiibpy-
BaJIbHI II0JIsA, sIKi BiJTHOBJIIOIOTH JIOKAJIbHY BHYTPIIIHIO CHMeE-
Tpifo Ha miaMHOXKUHI omHOUacHOCTi. [ljs 6araTo4acTHHKOBUX
TOJIiB, 1110 OIMMCYIOTh ME30HHM sIK 3B’si3aHi CTaHM KBapKa i aHTH-
KBapKa i € JBOIHJIEKCHUMU TEH30PAMU BiJIHOCHO JIOKAJIBHOI Ka-
Ji6pyBaJIbHOI IPYIIH, 3AIIPOIIOHOBAHO MOJEJb 3 JBOMAa PISHUMU
KaTiOpyBaJIbHUMH IIOJISIMH, KOXKHE 3 SIKHX IIOB’sI3aHe 31 CBOIM
irgexkcom. Taki 1oJisi IepeTBOPIOIOTHCS 33 OJHAKOBUM 3aKOHOM
IpU JIOKAJIBHOMY KaJlibpyBaJIbHOMY II€PETBOPEHHI 1 3a/10BOJIb-
HSIIOTh OJITHAKOBUM JUHAMIYHUM DIBHSIHHSIM, aJie HA HUX HaKJIa-
JAoThCs pi3Hi Kpaitosi ymoBu. Ilpu neBHux KpailoBuX yMoBax
i piBHAHHS ONMUCYIOTH TaKi di3u4Hi ABUIIA, SIK KOH(MANHMEHT
i acuMOTOTUYHY CBOOOMY KOJBOPOBUX OO’€KTIB, a IpU IHIIMX
KpPallOBHX yMOBAX — ME€XaHi3M CIIOHTAHHOI'O IIOPYIIEHHS CHMe-
Tpii. Ili numamivuni piBHSHHS KO3BOIAIOTH B MeEXKax OZHIET i
Tiel 2K MOJIesIi OIMCAaTH K YyTPUMAaHHsI KBapKiB BCEpeIuHi ra-
JpOHIB, Tak 1 IX B3a€MOJi0 B IIpOllecax PO3CisHHS T'aJIPOHiB,
HUISIXOM OOMiHY 3B’SI3aHMMH CTaHAMU I[VIIOOHIB — IUIFOO0JIaAMU.

737



M. Rybczyniski, G. Wilk, Z. Wtodarczyk

https://doi.org/10.15407 /ujpe64.8.738

M. RYBCZYNSKI,! G. WILK,? Z. WLODARCZYK!

I Institute of Physics, Jan Kochanowski University
(25-406 Kielce, Poland; e-mail: maciej.rybczynski@Qugk.edu.pl, zbigniew.wlodarczyk@Qugk.edu.pl)

2 National Centre for Nuclear Research

(02-093 Warsaw, Poland; e-mail: grzegorz.wilk@ncbj.gov.pl)

A LOOK AT MULTIPLICITY
DISTRIBUTIONS VIA MODIFIED COMBINANTS

The experimentally measured multiplicity distributions exhibit, after a closer inspection, the
peculiarly enhanced void probability and the oscillatory behavior of modified combinants. We
show that both these features can be used as additional sources of information, not yet fully
explored, on the mechanism of multiparticle production. We provide their theoretical under-
standing within the class of compound distributions.

Keywords: multiplicity distributions, combinants, void probabilities, compound distribu-

tions.

1. Introduction

The experimentally measured (non-single diffrac-
tive (NSD) charged) multiplicity distributions, P(N)
(which are one of the most thoroughly investigated
and discussed sources of information on the mech-
anism of the production process [1]), exhibit, af-
ter a closer inspection, the peculiarly enhanced
void probability, P(0) > P(1) [2, 3], and the os-
cillatory behavior of the so-called modified combi-
nants, Cj, introduced by us in [4, 5] (and thor-
oughly discussed in [6, 7]; they are closely connected
with the combinants C} introduced in [8] and dis-
cussed occasionally for some time [9-14]). Both fea-
tures were only rarely used as a source of infor-
mation. We demonstrate that the modified combi-
nants can be extracted experimentally from the mea-
sured P(N) by means of a recurrence relation in-
volving all P(N < j), and that new information
is hidden in their specific distinct oscillatory behav-
ior, which, in most cases, is not observed in the
C; obtained from the P(N) commonly used to fit
experimental results [4-7]. We discuss the possible
sources of such behavior and the connection of Cj
with the enhancement of void probabilities, and their
impact on our understanding of the multiparticle pro-
duction mechanism, with emphasis on understand-
ing both phenomena within the class of compound
distributions.

© M. RYBCZYNSKI, G. WILK, Z. WLODARCZYK, 2019
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2. Recurence Relation
and Modified Combinants

The dynamics of the multiparticle production pro-
cess is hidden in the way, in which the consecutive
measured multiplicities IV are connected. There are
two ways of characterizing the multiplicity distribu-
tions: by means of generating functions, G(z) =
= > N—o P(N)z", or by some form of a recurrence
relation between P(N). In the first case, one uses the
Poisson distribution as a reference and characterizes
deviations from it by means of combinants C}; de-
fined as [§]

oF = idj 111G(z)
Tl dad

: (1)

z=0

or by the expansion
InG(z) = P(0) + Y Cr27. (2)
j=1

For the Poisson distribution, Cy = (N) and C.; = 0.
The combinants were used in the analysis of experi-
mental data in [9-14]. In [10,13], it was demonstrated
that they are particularly useful in identifying the na-
ture of the emitting source. It turns out that, in the
case of S sources emitting particles without any re-
strictions concerning their number, the multiplicity
PS(N) is a completely symmetric function of degree
N of the probabilities of emission, p;, the generating
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function of which reduces for p; — 0 to the generat-
ing function of the Poisson Distribution (PD). For all
probabilities remaining the same, p;, = p, it reduces
to the generating function of the Negative Binomial
Distribution (NBD). In this case, the combinants are
given by a power series

S
1 ;
=-> (3)
Ji=

and are always positive. However, when each of the
sources can emit only a given number of particles
(let us assume, for definiteness, that at most only
one particle), then PS(N) is an elementary symmet-
ric function of degree N in the arguments, and the
corresponding combinants are given by

- ()

and alternate in sign for different j’s. For all prob-
abilities remaining the same, p; = p, a generating
function in this scenario reduces to the generating
function of the Binomial Distribution (BD) and the
combinants oscillate rapidly with period equal to 2.
Note that, in both cases, we were working with
probabilities p;, which were not extracted from exper-
iment, but their values were taken such that the mea-
sured multiplicity distributions are reproduced. They
are then usually represented by one of the known the-
oretical formulae for multiplicity distributions, P(N),
which can be defined either by the generating func-
tions mentioned above or by some recurrence rela-
tions connecting different P(NV). In the simplest (and
most popular) case, one assumes that the multiplic-
ity N is directly influenced only by its neighboring
multiplicities, (N £ 1), i.e., we have
(N+1)P(N+1)=g(N)P(N), ¢g(N)=a+pN. (5)
This recurrence relation yields BD (when o =
= Kp/(1 —p)and f = —a/K), PD (when a = X and
8 =0), and NBD (when a = kp and 8 = «o/k, where
p denotes the particle emission probability). Usual-
ly, the first choice of P(N) in fitting the data is
a single NBD [15] or two- [16, 17], three- [18], or
multicomponent NBDs [19] (or some other forms of
P(N) [1,15,20]). However, such a procedure only im-
proves the agreement at large N, whereas the ratio
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R = data/fit still deviates dramatically from unity
at small N for all fits [4, 5]. This means that the
measured P(N) contains information which is not
yet captured by the rather restrictive recurrence rela-
tion (5). Therefore, in [4], we proposed to use a more
general form of the recurrence relation (used, e.g., in
counting statistics when dealing with multiplication
effects in point processes [21]):

Zc P(N (6)

This relation connects mult1phc1t1es N by means of
some coefficients C;, which contain the memory of
particle N 4+ 1 about all the N — j previously pro-
duced particles. The most important feature of this
recurrence relation is that C'; can be directly calcu-
lated from the experimentally measured P(N) by re-
versing Eq. (6) [4-7]:

(N +1)P(N +1)

Jj—1 i

St
(7)

The modified combinants C; defined by the recur-

rence relation (7) are closely related to the combi-
nants C7 defined by Eq. (1), namely,

R P
C; = <>CJ+1 (8)

()65 = G +1) | TE |~

PO

Using Leibnitz’s formula for the j** derivative of the
quotient of two functions z = G'(2)/G(z),

() 1) _ : wFD
J) — J 4]
x G'"V) —j! E = D1) (9)

where G'(z)/G(z) =[In G(z)]’ and G(z)(N)/N!|Z:0 =
= P(N), we immediately obtain the recurrence rela-
tion (7).

The modified combinants, C;, share with the com-
binants C'f the apparent ability of identifying the na-
ture of the emitting source mentioned above (with,
respectively, Eq. (3) corresponding to the NBD case
with no oscillations, and Eq. (4) corresponding to the
rapidly oscillating case of BD). This also means that
C; can be calculated from the generating function

G(z) of P(N),

1 1 InG(2)
Gl dzitt

G'(J+1 k)
(G+1-

(N)Cj = (10)
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Fig. 1. Upper panel: Data on P(N) measured in ete™ colli-
sions by the ALEPH experiment at 91 GeV [23] are fitted by
the distribution obtained from the generating function given
by the product G(z) = Gep(z)GneD (%) with the parameters:
k' = 1 and p’ = 0.8725 for BD and k¥ = 4.2 and p = 0.75
for NBD. Lower panel: the modified combinants C; deduced
from these data on P(N). They can be fitted by C; obtained
from the same generating function with the same parameters,
as used for fitting P(N)

Thus, whereas the recurrence relation, Eq. (7), al-
lows us to obtain the C; from the experimental
data on P(N), Eq. (10) allows for their calculation
from the distribution defined by the generating func-
tion G(z).

Note that C; provide a similar measure of fluctu-
ations as the set of cumulant factorial moments, K,
which are very sensitive to the details of the multi-
plicity distribution and are frequently used in phe-
nomenological analyses of data (cf., [1,22]),

q—1
—1
K,=F,— Y (‘j_ 1)Kq_iFi, (11)
=1

where F; = (N(N — 1)(N —2)...(N — g+ 1)) are
the factorial moments, and K, can be expressed as
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an infinite series in Cj,

Ko=) me_l.

Jj=q

(12)

However, while the cumulants are best suited to study
densely populated regions of the phase space, combi-
nants are better suited for the study of sparsely pop-
ulated regions, because, according to Eq. (7), the cal-
culation of C; requires only a finite number of prob-
abilities P(N < j) (which may be advantageous in
applications).

The modified combinants share with the cumu-
lants the property of additivity. For a random vari-
able composed of independent random variables, with
its generating function given by the product of their
generating functions, G(z) = [[; G;(z), the corre-
sponding modified combinants are given by the sum of
the independent components. To illustrate this prop-
erty, let us consider the eTe™ data and use the gen-
erating function G(z) formally treated as a generat-
ing function of the multiplicity distribution P(N), in
which N counsists of both the particles from BD (Npp)
and from NBD (Nngp):
N = Npp + NnBD. (13)
In this case, the multiplicity distribution can be writ-
ten as

min{N,k'}
P(N) = Z Ppp (i) Pnpp (N — 1), (14)
i=0
and the respective modified combinants as
(N)C; = (Ngp) C](-BD) + (NnBD) CJ(-NBD)- (15)

Figure 1 shows the results of attempts to fit both the
experimentally measured [23] multiplicity distribu-
tions and the corresponding modified combinants C;
calculated from these data (cf. [24] for details). The
fits shown in Fig. 1 correspond to the parameters:
k' = 1 and p’ = 0.8725 for BD and k¥ = 4.2 and
p = 0.75 for NBD.

Concerning the void probabilities at all energies of
interest, one observes that P(0) > P(1), a feature
which cannot be reproduced by any composition of
NBD used to fit the data [7]. To visualize the im-
portance of this result, we note firstly that P(0) is
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strongly connected with the modified combinants Cj,
in fact:

P(0)=exp (- j<]+v>lcj . (16)
=0

From Eq. (7), one can deduce that the P(0) > P(1)
property is possible only when (N)Cy < 1. For most
multiplicity distributions, P(2) > P(1), which results
in an additional condition, Cy > Cy(2—(N)Cy); taken
togethe,r this means that C'; > Cy. However, because
of the normalization condition Z;io C; =1, such an
initial increase of C; cannot continue for all ranks j,
and we should observe some kind of nonmonotonic
behavior of C; with rank j in this case. This means
that all multiplicity distributions, for which the mod-
ified combinants C; decrease monotonically with rank
7, do not exhibit the enhanced void probability.

3. Compound Distributions

To continue, we use the idea of compound distribu-
tions (CD), which are applicable, when (as in our
case) the production process consists of a number M
of some objects (clusters/fireballs/etc.) produced ac-
cording to a distribution f(M) (defined by a gener-
ating function F'(z)), which subsequently decay inde-
pendently into a number of secondaries, ni—1,.. ,
following some other (always the same for all M)
distribution, g(n) (defined by a generating function
G(2)). The resultant multiplicity distribution,

M
h (N = Zn) = f(M)®g(n),
=0

is a compound distribution of f and g with the gen-
erating function

(17)

(18)

Equation (18) means that, in the case where f(M) is
a Poisson distribution with the generating function

F(z) = expA(z - 1)), (19)

the combinants for any other distribution g(n) with
a generating function G(z), which are obtained from
the compound distribution A(N) = Ppp ® g(n) and
calculated with the use of Eq. (10), do not oscillate
and are equal to

AG+1)
(N)
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Cj = 9(j +1). (20)
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Fig. 2. C; for BD, BD compounded with 0y, m with m = 10
and compounded with the Poisson distribution with A = 10

This fact explains why C; from NBDs do not oscil-
late. This is because NBD is a compound distribution
of the Poisson and logarithmic distributions. This
means that g(n) = —p™/[nln(l — p)], and h(N) is
NBD with & = —\/In(1—p). In this case, C; coincide
with those derived before and given by Eq. (3). Ac-
tually, this reasoning applies to all more complicated
compound distributions, with any distribution itself
being a compound Poisson distribution. This prop-
erty limits the set of distributions P(N) leading to
oscillating C, to BD, and to all compound distribu-
tions based on it. In this case, the period of oscilla-
tions is determined by the number of particles emit-
ted from the source. For the compound distributions
based on BD with P(n) = d,, ,,, we have

j/m—+1
Cj = (—l)j/m+1£ (p>J )

AN @)

(for j = mk and C; = 0 for j # mk, where
k = 1,2,3,...). For broader distributions P(n), we
get a smoother C; dependence on rank j. For exam-
ple, for P(n) given by the Poisson distribution (with
expected value \), we obtain a Compound Binomial
Distribution (CBD) with the generating function

H(z) = {pexp[\(z — 1)] + 1 —p}", (22)
and the modified combinants are given by
(—1)itLKerNit11p p—1
= A ( Ap)v (23)

(N) (e’\lp%p + l)jJrl

where A;(x) are the Eulerian polynomials. As an il-
lustration, we show in Fig. 2 that, by compounding
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Fig. 3. Multiplicity distributions P(N) measured in pp col-
lisions by ALICE [25] (upper panel) and the corresponding
modified combinants C; (lower panel). Data are fitted using a
two compound distribution (BD+NBD) given by Egs. (25) and
(24) with the parameters: K1 = Ko = 3, p1 = 0.9, p2 = 0.645,
k1 = 2.8, kg = 1.34, m; = 5.75, ma = 23.5, w1 = 0.24 and
wag = 0.76

BD with a Poisson distribution, one gains control over
the period of oscillations (now equal to 2\) and their
amplitude. However, it turns out that such a combi-
nation does not allow us to fit data.

4. Multicomponent

The situation improves substantially, when one uses
a multi-CBD based on Eq. (22). But the agreement
is not yet satisfactory. It turns out that the situa-
tion improves dramatically, if one replaces the Poisson
distribution by NBD and, additionally, uses a two-
component version of such CBD with

P(N) = Z wih (N; pi, Ki, ki, m;)

i=1,2

(24)
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with the generating function of each component
equal to

1-9p k

H(z)=|p (1 —p’z) +1-p
In such a case, as can be seen in Fig. 3, one gains a sat-
isfactory control over the periods of oscillations, their
amplitudes, and their behavior as a function of the
rank j. Moreover, one can nicely fit P(V) and C;. Of
special importance is the fact that the enhancement
P(0) > P(1) is also reproduced in this approach.

The above result also explains the apparent success
in fitting the experimentally observed oscillations of
C; by using a weighted sum of the three NBD used in
[26]. Such a distribution uses freely selected weights
and parameters (p, k) of NBDs and, therefore, resem-
bles the compound distribution of BD with NBD. Ho-
wever, we note that the sum of M variables (with
M =0, 1, 2,...), each from NBD characterized by
parameters (p, k), is described by NBD characterized
by (p, Mk). Therefore, as discussed before, it cannot
reproduce the void probability P(0). This can be re-
produced only in the case where M = 0, 1,.... K
is distributed according to BD, and we have a K-
component NBD (where the consecutive NBDs have
precisely defined parameters k),

K

(25)

K
P(N) =Y Psp(M)Pxsp(N;p, Mk). (26)
M=0

In this case, one also has the M = 0 component,
which is lacking in the previous multi-NBD case used
in [26]. This is the reason for that, whereas the com-
pound (BD&NBD) distribution reproduces the void
probability, P(0), the single NBD (or any combina-
tion of NBDs) do not. This means that the observa-
tion of the peculiar behavior of the void probability
discussed above signals the necessity of using some
compound distribution based onBD to fit data for
P(N) (and the C; obtained from it).

5. Summary and Conclusions

Since the time of Ref. [8], one encounters essen-
tially no detailed experimental studies of the com-
binants and only rather sporadic attempts at their
phenomenological use to describe the multiparticle
production processes. We demonstrate that the mod-
ified combinants C; are a valuable tool for the in-
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vestigations of multiplicity distributions, and C; de-
duced from the measured multiplicity distributions,
P(N), could provide additional information on the
dynamics of the particle production. This, in turn,
could allow us to reduce the number of possible in-
terpretations presented so far and, perhaps, answer
some of the many still open fundamental questions
(that this is possible, despite experimental errors,
has been shown in [7, 26]). Finally, let us note that
a large number of papers suggest some kind of uni-
versality in the mechanisms of hadron production in
eTe™ anihilations and in pp and pp collisions. This
arises from observations of the average multiplicities
and relative dispersions in both types of processes
(cf., e.g., [27,28]). However, as we have shown here,
the modified combinant analysis reveals differences
between these processes. Namely, while, in ete™ an-
nihilations, we observe oscillations of C; with period
2, the period of oscillations in pp collisions is ~ 10
times longer, and the amplitude of oscillations in both
types of processes differs dramatically. At the mo-
ment, this problem remains open and awaits a further
investigation.
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IIOTJIAd HA MHO>KMHHI PO3IIOA1/IN
YEPE3 MOAVNPIKOBAHI KOMBIHAHTU

Peszowme

ExcnepumenTanbuo BEMIPSIHI PO3NOMIIH 110 MHOXKHHHOCTI ITi-
cJisl IX peTesIbHOrO aHAII3y NEeMOHCTPYIOTh HE3BUYHO IiJIBHINE-
HYy IMOBIPHICTE NOpPOXKHEYI 1 OCHUISATOPHY MOBEIIHKY MOJIM-
dikoBanux KombinanTiB. Mu mokasyemo, mo obuasi mi pucu
MOKHa BUKODHUCTATHU SIK JIOJIATKOBI jKkepesa iHdopmaril, e
He BUKODPHCTaHI B MOBHIN Mipi B MexaHi3Max 6araTo<uacTHHKO-
BOro HapomKeHHsl. Mu HagaeMo IX TeopeTHUHY iHTepIIpeTalio
B TepMiHaxX KOMIIAyHIHUX PO3IOILJIIB.
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PHASE TRANSITIONS AND BOSE-EINSTEIN
CONDENSATION IN ALPHA-NUCLEON MATTER

The equation of state and the phase diagram of an isospin-symmetric chemically equilibrated
mizture of a particles and nucleons (N ) are studied in the mean-field approzimation. We use
a Skyrme-like parametrization of mean-field potentials as functions of the partial densities of
particles. The parameters of these potentials are chosen by fitting the known properties of pure
N- and pure a-matters at zero temperature. The sensitivity of results to the choice of the aN
attraction strength is investigated. The phase diagram of the « — N mixture is studied with a
special attention paid to the liquid-gas phase transitions and the Bose—FEinstein condensation
of a particles. We have found two first-order phase transitions, stable and metastable, which
differ significantly by the fractions of a’s. It is shown that the states with « condensate are
metastable.

Keywords: phase transitions, mean-field model, Bose—Einstein condensation, chemical equi-

librium.

1. Introduction

At subsaturation densities and low temperatures, the
nuclear matter has a tendency to the clusterization,
when small and big nucleon clusters are formed un-
der the conditions of thermal and chemical equilib-
rium. This state of excited nuclear matter is realized
in nuclear reactions at intermediate energies known as
the multifragmentation of nuclei [1, 2]. It is believed
that the clusterized nuclear matter is also formed in
outer regions of neutron-stars and in supernova ex-
plosions [3].

In our recent paper [4], we studied the equation
of state (EoS) of an idealized system composed en-
tirely of a-particles. Their interaction was described
by a Skyrme-like mean-field potential. We have found

© L.M. SATAROV, I.N. MISHUSTIN,
A. MOTORNENKO, V. VOVCHENKO,
M.I. GORENSTEIN, H. STOECKER, 2019
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that such a system exhibits two interesting phenom-
ena, namely, the Bose—Einstein condensation (BEC)
and the liquid-gas phase transition (LGPT). Ear-
lier, the cold alpha matter was considered micro-
scopically, by using phenomenological aa potentials
in Ref. [5].

However, by introducing such one-component sys-
tem, one disregards a possible dissociation of alphas
into lighter clusters and nucleons. The binary oo — N
matter in chemical equilibrium with respect to the
reactions « <> 4N was considered in [6], by using
the virial approach. Due to the neglect of quantum
statistics and three-body forces, such approach may
be justified only at small baryon densities.

In this paper, we briefly discuss the results of our
recent article [7], where we studied the isospin-sym-
metric a — N matter under the conditions of chem-
ical equilibrium. The EoS of such matter was calcu-
lated in the mean-field approach, by using Skyrme-
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like mean-field potentials. In our study, we simulta-
neously take into account the LGPT and BEC effects.

2. Mean-Field Model
for Interacting a« — IN Matter

Let us consider the iso-symmetric system (with equal
numbers of protons and neutrons) composed of nu-
cleons (N) and alpha-particles (a). A small differ-
ence between the proton and neutron masses and
the Coulomb interaction effects will be neglected. Our
consideration will be restricted to small temperatures
T < 30 MeV. In this case, the production of pions
and other mesons, as well as the excitation of bary-
onic resonances, become negligible. In addition, the
masses my ~ 938.9 MeV and m, ~ 3727.3 MeV are
much larger than the system temperature. Thus, a
non-relativistic approximation can be used in the low-
est order in T'/m .

In the grand canonical ensemble, the pressure
p (T, p) is a function of the temperature T and baryon
chemical potential p. The latter is responsible for the
conservation of the baryon charge. The chemical po-
tentials of N and « satisfy the relations

Ha = 4, (1)

which correspond to the condition of chemical equi-
librium in the N —a mixture due to the reactions o ¢
4N.

Let us denote, by ny and ny, the partial number
densities of N and «, respectively. The baryonic den-
sity npg (T, ) = ny + 4ng, entropy density s, and
energy density ¢ can be calculated from p (T, i), by
using the equations

e (2P (9%
= \ow)y ar),

To characterize the relative abundances of a’s, we
introduce their mass concentration x = 4n,/np.

In our mean-field model, we consider multiparti-
cle interactions in the & — N matter, by introducing
a temperature-independent “excess part” of the pres-
sure Ap

p=pN(T,nn) + pi(T,ns) + Ap(ny, na), (3)

UN = K,

e=Ts+pnpg—p. (2)

where the first and second terms on the right-hand
side (RHS) are, respectively, the pressure of the ideal
gas of nucleons and a’s. At known Ap, one can calcu-
late the chemical potentials of N and « as functions
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of T, ny,ne. Solving further Egs. (1), we get all ther-
modynamic quantities at given T, u.

Earlier, we suggested a similar scheme to describe
the particle interactions in one-component « [4] and
nucleon [8] matters. This corresponds, respectively,
to the limiting cases ny — 0 and n, — 0. In the case
of binary a— N mixture, we use a generalized Skyrme-
like parametrization [7] for the excess pressure

Ap(ny,na) = f(aNn?V + 2ananN o + aani) +
+by (ny + &ng) 2. (4)

Using Eqgs. (3) and (4) and applying the thermo-
dynamic relations, we get the expressions

pn = in(T,ny) —2(anny + anana) +

v+2 1
+L—Zby(ny +Eng) T, 5
PO N(ny +Ena) (5)
Ha = lja(T7 na) - 2(aNanN +aana)+
v+2 1
R av-‘r’
+7+1 NE(N +Ena) (6)

Here, 11;(T,n;) is the chemical potential of the ideal
gas of ith particles with the density n;, (i = N,«).
The second and third terms on RHS correspond to
the attractive and repulsive parts of mean-field poten-
tials for N ans «. Note that, in the region of BEC,
l1o reaches its maximum possible value i, = mg,
and n, contains the contribution of Bose-condensed
o’s. In our calculations, we separate the states which
are (meta)stable with respect to fluctuations of par-
ticle densities!.

To choose the model parameters apy,by,vy, we
fit the ground-state (GS) properties of the cold
(T = 0) iso-symmetric nuclear matter. This is the
state with zero pressure and minimal energy per
baryon. We assume the GS-values puy = 923 MeV,
ny = 0.15 fm™® [8] and choose v = 1/62. The pa-
rameters a,,& are estimated, by using the proper-
ties of a cold o matter. We fit the values of density
(nq = 0.036 fm™>) and binding energy per baryon
(E/B = —12 MeV) obtained in Ref. [5] for the GS of
this matter.

The cross-term coefficient ay, determines the at-
tractive part of the Na mean-field potential. It is

! For such states, the matrix ||Ou;/On;|| is positive definite.
2 As shown in Refs. [7, 8], such v gives reasonable values of
nuclear compressibility.
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Fig. 1. Isotherm T = 2 MeV of @ — N matter on the (u,p) (a) and (nny,na) (b) planes. The stable, metastable, and unstable
parts of the isotherm are shown, respectively, by the solid, dashed, and dotted lines. The dots PT; and PT2 in (a) show the
positions of stable and metastable LGPT, respectively. The dash-dotted line in (b) is calculated for the ideal & — N gas. Lines
C1D; and Cy D2 correspond to the mixed—phase states of PT1 and PTa, respectively. The thin solid line represents the isotherm

T = 2 MeV from Ref. [6]

the only model parameter which is not fixed in
our approach. To constrain this coefficient, we con-
sider contours of the energy per baryon for the cold
o — N matter on the (np, x) plane. Our calculations
show [7] that the properties of GS of such matter
change drastically at some critical value ay, = a. ~
2.1 GeVfm?. In the overcritical region ay, > ax, the
model predicts nonzero fractions of « in the GS of
the a — N matter. In this case, the GS is stronger
bound as compared to the pure nucleon matter. Ap-
parently, this is in contradiction with phenomenolog-
ical properties of the nuclear matter. Therefore, we
consider only subcritical values of ap.. To probe the
sensitivity to this coefficient, we made calculations
for aye = 1 and 1.9 GeVim?®. From the comparison
with results of Ref. [6], we found that the latter value
is more reasonable. Our “preferred” values of model
parameters are given in Table 1.

3. Phase Diagram of a — N Matter

By substituting (5) and (6) into (1) and solving
the resulting equations, we get the isotherms of the
a — N matter for different pu. At low enough temper-
atures, one obtains, in general, several solutions for
the pressure at given T, . Solutions with the largest
(smallest) pressure correspond to stable (unstable)
states. This is a typical situation for LGPT.

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

Figure 1, a represents the isotherm T = 2 MeV
on the (u,p) plane. According to the Gibbs rule, the
intersection points of (meta)stable branches of the
pressure as functions of p correspond to phase tran-
sitions (PTs). As one can see from Fig. 1, a, there are
two PTs at T = 2 MeV. The first transition, PTy,
occurs at a smaller baryon chemical potential than
for PT5. The states on the dashed lines have smaller
pressure as compared to states with the same p on
the solid lines. Therefore, the second transition PTy
is metastable.

Figure 1, b shows the same isotherm T = 2 MeV,
but on the (ny,n.) plane. The shading represents
the region of BEC. The states between C; and D;
(C2 and D3) are mixed-phase states for the stable
(metastable) PT. As compared to PTy, the concen-
trations of a are much larger for the mixed-phase
states of PT5. A strong suppression of « is predicted
at large nucleon densities. According to our calcula-
tion, BEC states are metastable (see the dashed line
in the shaded domain).

Table 1. Model parameters

~ an, bn, aa, ¢ GNa
GeV fm3 | GeV fm35 | GeV fm3 GeV fm3
1/6 1.17 1.48 3.83 2.006 1.9
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boundaries of the mixed phase for stable (b) and metastable (d) PT of the & — N mixture on the (ng,T) plane. Full circles in (a)
and (b) show positions of the critical point. The dashed lines in (¢) and (d) represent boundaries of the BEC region. The open
square (circle) marks the end (triple) point of the metastable PT. The full squares and diamonds show, respectively, the GS
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Table 2. Characteristics of phase
transitions in o — N matter

Stable PT Metastable PT
Tcp,|cps| mBCP, Tk, | bK, Trp,
MeV|MeV| fm—3 XCP o MeviMev| X [ Mev
14.7 [908.6(5.3 x 1072(6.9 x 10~ 2| 4.6 [925.7(0.46-0.86| 3.4

Analyzing the results at different T, we get the
phase diagram of the & — N matter. The stable and
metastable parts of this diagram are shown in the
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upper and low panels of Fig. 2. Characteristics of
PT; and PT5 are shown in Table 2. Note that the
metastable PT disappears at the temperature Tk ~
~ 5 MeV which is much less than the critical temper-
ature Tcp ~ 15 MeV of the stable PT.

4. Conclusions

Our model describes both the phase transitions and
BEC of the @« — N matter. The results of this pa-
per may be used for studying the nuclear cluster pro-
duction in heavy-ion reactions, as well as in astro-

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8
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physics. We think that the present formalism can be
also used for the binary mixtures of fermionic atoms
and bosonic molecules, like H + Hy or D + Ds.
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®A30BI [IEPETBOPEHHS
TA KOHIEHCAIIISA BO3E-ENHIIITENHA
B AJIb®A-HYKJIOHHI MATEPII

Peswowme

PiBusinus crany Ta dasoBa jgiarpama i30CHiH-CUMETPUYHOL Xi-
MiYHO pIBHOBaxKHOI cyMimni o 9acTMHOK Ta HyKJIoHIB (N) BU-
BYaETbCA B HaOJIM2KeHHI cepenuporo mnoJiss. Mu 3acrocoBye-
Mo napamerpu3ariiio Ckipma s IOTEHIaiB CepeHBOrO IO~
JIst AK (DYHKIIA HapliajJbHUX yCTUH 4YacTHHOK. [lapamerpn
IUX [OTEHIlaJliB 3HAiIeH] sK pe3yJibTaT IiJArOHKHA BiJOMHX
BiracTuBOCTEN umcTol N- Ta 4nucrol a-marepil Hpu HYJIbO-
Bilf Temieparypi. Busdena 4dyTimBicTh pesynbTariB 10 BHOO-
py Besmumau N mpursaranasa. Pasosa giarpama o — N cy-
Milni BHBYAETHCS 3 OCOOJIMBOIO YBArow M0 IpoleciB ¢ha3oBo-
O IEPETBOPEHHS pignHa-ra3 Ta KongeHcail Boze-Eitnmreitna
O o-9acTHHOK. Mu 3maxomumo gBa ¢a3oBi mepeTBOpEH-
Hsl, cTabiabHUil Ta MeTacTabiIbHUI, fAKi 3HAYHO BiJIpPi3HAIO-
ThCsI KOHIEHTPAIIAMU (-9acTUHOK. [lokasano, 1110 cranm 3 a-
KOH/IEHCATOM € MeTacTablIbHUMU.
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RECENT RESULTS ON INCLUSIVE
QUARKONIUM PAIR PRODUCTION
IN PROTON-PROTON COLLISIONS

Recently, there has been much interest in the pair production of charmonia. One of the main
motivations behind these studies is that the production of quarkonium pairs is expected to re-
cetve an important contribution from the double parton scattering (DPS) production mode. A
large effective cross-section oeg is found from the empirical analysis of the J/v-pair produc-
tion — about a factor 2.5 smaller than the usually accepted ceg = 15 mb. Here, we present
the recent results of our calculations of the x. pair production, mainly in the single parton
scattering (SPS) mode. An important feature is that the single-gluon exchange mechanism can
to some extent mimic the behavior of the DPS production.

Keywords: perturbative QCD, quarkonia, multiparton processes.

1. Introduction

The production of J/iy-pairs has been suggested
as a probe of the double-parton scattering (DPS)
processes [1]. More generally, the DPS production
mode is expected to be especially important in the
charm sector [2]. Therefore, recently, there has been
much interest in the quarkonium pair production in
proton-proton collisions also from the experimental
side. Among others, the cross-sections for the produc-
tion of J/i-pairs were measured at the Tevatron [3]
and the LHC [4-7].

A number of puzzles remain with these data, how-
ever. For example, the single parton scattering (SPS)
leading order of O(ad) (see, e.g., [8, 9]) does not
describe well all the kinematic distributions in the
case of the ATLAS and CMS data. Especially, when
the rapidity distance Ay between two J/1 mesons is
large, it falls short of experimental data. If one as-
cribes the whole discrepancy to DPS processes, the
normalization of DPS comes out a factor ~ 2.5 larger
than in other hard processes. It is still an open issue
at the moment whether this points to a nonuniver-
sality of DPS effects or whether there are additional

© W. SCHAFER, 1. BABIARZ, A. CISEK,
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single parton scattering mechanisms not taken into
account up to now.

This problem motivated our recent studies of the
Xe-pair production in the kp-factorization [10] and
of the production of y.-pairs associated with a gluon
(jet) in the collinear factorization [11]. We summarize
these works in this contribution.

2. Production of x.-Pairs

In the standard hard scattering approach, the cross-
section of the production of a pair of quarkonia a, b is
calculated from a convolution of parton densities with
a parton-level cross-section (see the left diagram in
Fig. 1). However, at high energies, favored by a rise
of the gluon distribution at small z, there is a siz-
able contribution from processes in which two or more
hard processes proceed in the same proton-proton col-
lision (see the right diagram in Fig. 1).

One commonly assumes the factorized ansatz for
the production cross- section in the DPS mode:

dopps(pp — abX)

dyadyp®pard®pyr

1 1 do(pp — aX) do(pp — bX) (1)
140w oo dyad®Par  dypd®pyr
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DPS

SPS

Fig. 1. Sketch of the single parton scattering (SPS) and dou-
ble parton scattering (DPS) production modes

The DPS cross-section is written as a product of the
inclusive single-particle spectra, and the cross-section
is normalized by the “effective cross-section” oeg. The
latter is not the cross-section for a specific process —
the real parameter is rather its inverse, which is re-
lated in the simplest model to the overlap of parton
densities in the transverse plane, ¢ty (b):

_ [ vtiao
Oeff

(2)
TNN(b) = /dQStN(S>tN(b — S).

The salient features of DPS are obvious from Eq. (1).
Important for us is the observation that each of the
single particle spectra is a fairly broad function of
Ya,b- Thus, the DPS distribution in rapidity distance
Ay = yp — yo will be very broad as well. As far as
the effective cross-section is concerned, it is usually
taken in the ballpark of g = 15 mb, which is within
the line of a fair amount of hard processes, see, e.g.,
a table in [5].

In the case of J/v-pair production, the lowest-order
“box-diagram” mechanism suggests a very clean sep-
aration of SPS versus DPS modes. Indeed, the ex-
plicit calculations performed in the kp-factorization
[9] show that the J/i-pair distribution is sharply
peaked around Ay = 0.

A main point of this presentation is the fact that
the situation looks completely different in the case of
production of a pair of x. mesons. Indeed, the x.s
states, which come in three different spins J = 0,1, 2
have positive C-parity and thus couple to two glu-
ons in a color singlet state. Hence, the mechanism of
Fig. 2 with the t-channel exchange of a single gluon
is possible. It is well understood that it will lead to a
gg — xx cross-section independent of the cm-energy
in the high-energy limit. The matrix element for this
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Fig. 2. Gluon t-channel exchange mechanism for the produc-
tion of xcXxc pairs

10— T T T T g

\s = 8TeV

1

T T ]
El— Xc(o) Xc(o) \s = 8TeV ;
DPS

== (1) % (1)
Qo= x.(2) x(2)

Ay

Fig. 3. Distribution of x.-pairs in the rapidity difference be-
tween mesons. Top panel: SPS mode, lower panel: DPS mode

process thus puts no penalty on a large rapidity dis-
tance Ay between the x.-mesons.

The relevant amplitudes can be obtained from ef-
fective g*g* — x.g vertices for the fusion of two
spacelike off-shell gluons. These have been obtained
in Ref. [10] for all possible spin-states of the .
family. We also performed calculations in the kp-
factorization including the transverse momenta of
incoming gluons. In the upper panel of Fig. 3, we
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Fig. 4. Feynman diagrams for the production of a x.-pair
associated with a gluon
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Fig. 5. Distribution in rapidity between xo mesons (top panel)
and x.2 mesons for the following different processes: Born-level
production of xc.-pairs, production of x. pairs with a leading
gluon, and production of x.-pairs with a central gluon

show the distribution in rapidity distance Ay be-
tween mesons. Note that we only show, as an ex-
ample, the production of pairs of identical mesons,
the full array of all possible combinations can be
found in Ref. [10]. In the lower panel of Fig. 3, we
show distributions in Ay for the DPS mode, by us-
ing oeg = 15 mb. We see that these distributions are
very broad and in the same ballpark as the SPS con-
tribution. Of course, there is no minimum at Ay =0
for the DPS distributions. Thus, we observe rather
similar distributions in Ay for single and double par-
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ton scattering productions of different y.-quarkonia
states. This shows that both contributions must be
included in the analysis of future data on the x.7, X,
production. Now, one would observe that the large ra-
pidity distance between mesons means a large phase
space for the emission of additional gluons. To investi-
gate this situation, we studied the associated produc-
tion of x. pairs with a gluon in the standard collinear
factorization in Ref. [11]. There are two main con-
tributions shown in the diagrams of Fig. 4: first, the
emission of a “leading gluon”, where the gluon jet car-
ries a large fraction of the momentum carried by one
of the incoming gluons, and, second, the production
of “central” gluons, which are emitted in the rapid-
ity space between two mesons with a large difference
in rapidity from either one. Some distributions, again
in rapidity distance Ay between mesons, are shown
in Fig. 5. The production of leading gluons adds to
the Born-result to recover the kp-factorization result,
while the production of central gluons gives rise to an
about 20% enhancement of the cross-section. Here,
one may think of ag Ay as a large parameter which
could be resummed in the future using the BFKL for-
malism.

3. Conclusions

The pair production of quarkonia is a topic that still
poses puzzles to theorists. The quantitative under-
standing of DPS contributions requires not only a
reliable formalism for its calculation but also a good
understanding of SPS processes that can show a sim-
ilar behavior as DPS in many kinematic variables.

For the theoretically simplest case, the production
of x.-pairs, we have shown that the cross-sections for
different combinations of x. quarkonia, the SPS and
DPS cross-sections, are of the similar size, and both
involve very broad distributions in the rapidity dis-
tance Ay.

We have also shown that an enhancement of the
pair production cross-section for y.-pairs can be ex-
pected from the higher-order corrections, due to the
large phase space of the gluon emission.

However, it turns out that the feed-down from -
pairs into the J/y-pair channel does not resolve the
discrepancy between different determinations of ceg.

It might be necessary to look deeper into the fun-
damentals of the DPS theory (see, e.g., [13]) to under-
stand the peculiar behavior of the charmonium pair
production.
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HOBI PE3VJIETATU
[IPO THKJIIO3UBHE HAPOJI?KEHHSI
[IAP KBAPKOHIYMY

B IIPOTOH-IIPOTOHHUX 3ITKHEHHAX

PeswwMme

OcTraHHIM 9aCOM CIIOCTEPIraeThCs 3HAYHUN IHTEpeC JI0 Mpolie-
ciB mapHOro Hapo/KeHHs mapMoHis. OHi€e0 3 npu4yuH iHTE-
pecy € Te, 10 MPOAYKyBaHHs ITap KBAPKOHIyMy B 3Ha4Hiil Mipi
3yMOBJIeHe NoABiitHUM po3cisausam naprouis (DPS). 3 emnipn-
YHOrO aHaji3y HapoJKeHHs map J/1) 3HaiifleHO BeJuKe 3Hade-
HHsI eEKTUBHOIO IIepepisy e = 15 M6. Mu mpezncraBisieMo
HOBI pe3ysibTaTy HAIIUX PO3PaxXyHKIB IPOJAYKYBaHHS I[ap Xc
B MOJi OJMHAPHOrO IapTOHHOro poscisuusa (SPS). Baxkimsum
MOMEHTOM € Te, IO OJHOIIOHHMI OOMiH B Jesikili Mipi MoxKe
cumystioBatu edekT nozasiiinoro napronsoro oominy (DPE).
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INDUCED COLOR CHARGES,
EFFECTIVE ~+G VERTEX IN QGP.
APPLICATIONS TO HEAVY-ION COLLISIONS

We calculate the induced color charges Q3.4, Q% 4 and the effective vertex v —~-gluon generated
in a quark-gluon plasma with the Ay condensate because of the color C-parity violation at this
background. To imitate the case of heavy-ion collisions, we consider the model of the plasma
confined in the narrow infinite plate and derive the classical gluon potentials ¢> and ¢® produced
by these charges. Two applications — the scattering of photons on a plasma and the conversion
of gluon fields in two photons radiated from the plasma — are discussed.

Keywords: quark-gluon plasma, heavy-ion collision, Polyakov’s loop, effective vertex.

1. Introduction

Investigations of the deconfinement phase transition
(DPT) and the quark-gluon plasma (QGP) are in the
center of modern high energy physics. These phenom-
ena happen at high temperature due to the asymp-
totic freedom of strong interactions. The researches
are carried out either in experiments on hadron colli-
sions or in quantum field theory. The order parame-
ter for DPT is Polyakov’s loop (PL), which is zero at
low temperatures and nonzero at high temperatures
T > T4, where Ty ~ 160-180 MeV [1] is the phase
transition temperature. The standard information on
DPT is adduced, in particular, in [2].
The PL is defined as [3]:

PL = d$4 A0($4,X). (1)
/

Here, Ag(x4,%) is the zero component of the gauge
field potential, the integration contour is going along
the fourth direction and back to an initial point in
the lattice Euclidean space-time. The PL was intro-
duced in pure gluodynamics. It violates the center of
the color group symmetry Z(3) that results in the
nonconservation of the color charges @3 and Q2.
The QGP state consists of quarks and gluons lib-
erated from hadrons. Polyakov’s loop is not a solu-
tion to the local Yang-Mills equations. The local or-
der parameter for DPT is the Ay condensate, which
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is a constant at T' > Ty. It can be calculated, in par-
ticular, from a two-loop effective potential. More de-
tails on different calculations carried out in analytic
quantum field theory can be seen in [4]. Taking these
results into consideration, we have to consider QGP
as a state at the Ag background, which breaks the
color C-parity symmetry. So, new type phenomena
may happen.

In the SU(2) gluodynamics, the gluon spectra at
Ao were calculated and investigated in Ref. [5, 6]. In
particular, the induced color charge Q3 ; was also
computed. It was shown that the state with a con-
densate is free of infrared instabilities existing in a
gluon plasma in the empty space. Thus, the ground
state with A is a good approximation to the plasma
after DPT.

In Ref. 7], the induced charges Q3 ;, Q% ; gener-
ated by quark loops in QCD were calculated. In what
follows, we consider the QCD case, but the precise
values of the induced charges will not be specified.

The paper is organized as follows. In Sect. 2, the
color induced charges @3, and QP generated by
tadpole quark loops with one gluon lines, which are
nonzero due to Furry’s theorem violation, are calcu-
lated. In Sect. 3, we consider a simple model of the
plasma confined in a plate narrow in one dimension
and infinite in two other dimensions with the Ag con-
densate and induced charges. We compute the classi-
cal gluon potentials ¢* and ¢® generated by the in-
duced charges Q3 ; and Q. In Sect. 4, the effective
vvG vertex generated in the plasma is calculated in
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the high-temperature approximation. In Sect. 5, the
processes of photon scattering on these potentials and
the conversion of gluons in two photons are consid-
ered as the application. These new phenomena have
to happen due to the three-linear effective vertices.

2. Induced Color
Charges and Quark Propagator

In what follows, we consider the case of A3 back-
ground field and present the color field potential in
the form Qj;, — Ap6™38,4 + Q,, where @}, is a quan-
tum field. The calculation of de is snmlar (see [7]),
and the final results will be adduced only.

The explicit expression is given by the form

QZQ?nd(SlA(sag = QZQ?Rd’ where
dp A%' ij
a = [ 47]G](p4,p,140) - (2

Here, A3 is the Gell-Mann matrix, and 3 = 1/T is the
inverse temperature. The expressions for the propa-
gators are

i = 1= A) +py+m
(pa — Ag)2 +p*>+m?’
Y4 (ps + Ao) + Py +m
(pa+ Ao)? +p2+m?

3)
G22 —

For brevity, we denoted Ay = gAp/2 entering
the interaction Lagrangian. Accounting for the trace
Tr[(v*)?] = —4, the diagonal values of A\, and
Tr[yty] = 0, we get

_ 49
=3 [
7r(2n+1)

The sum over py = 35
using the formula

LS s =g [ [%] s, 5)
Pa C

where the contour C' encloses clockwise the real axis
in the complex plane w.

The calculations (after transformation to the spher-
ical coordinates and angular integrations) give

sin( A 7 1
3a= 000 Oﬂ / pPdp (6)
0

pa+ A
3 (ps+ Ag)2 +p2+m?’

(4)

can be calculated, by

cos(Ap) + cosh(e,B)’
where e =p? +m?.
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Considering the high-temperature limit 5 — oo, we
obtain

4 o 2m? 3
de 940 gﬁ - 3?5"‘0(5 )|- (7)
Hence, we see that the first term is independent of
the mass and dominant at high temperatures.

Now, for completeness, we calculate the tempera-
ture sum in Eq. (4).

The integrand in Eq. (4) has the form

pa+ Ao
f(p4) = ) )5’ (8)
(pa —ps " )(pa —ps)
where p( ) = —Ag + iep, pff) = —Ag — iep. The sum

in Eq. (5) after computing the simple residues equals
i€p B
ﬁ Z f(pa) l o @ tan (2 )
— P4

—iep 5 (2
+tan( o) )] (9)
b 2

Substituting the corresponding parameters and ful-

filling elementary transformations, we find

1 sin(Ap/3)
"~ 2cos(ApfB) + cosh(e,B)’

(10)

By substituting S; in Eq. (4), we obtain Eq. (6).

Performing similar calculations for Q% ;, we get [7]

16 = 8m?2
33 3v3n2

B+0(8%)|. (11)

md = gA8

Here, A3 is the background field generated in the
plasma. For our problem, it is a given number.

Now, we calculate the quark propagator account-
ing for the induced charge by means of Schwinger—
Dyson’s equation. In the Euclidean space-time, it
reads

S7p) = — <74 <p4 - A:ng> + 7p> +m — X(p),
(12)

where X(p) is a quark mass operator. In our prob-
lem, to consider the presence of the induced charge,
we separate the part of radiation corrections X(tP-)
equaling to the sum of the tadpole diagrams with one
gluon line G%, which relates the quark bubble to a
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quark line. In Eq. (12), we also substitute the Ag ex-
pression explicitly. In the rest frame of the plasma,
where the actual calculations are carried out, the ve-
locity vector is u, = (us = 1, u=0).

Next, we have to consider the gluon field propaga-
tor G3,(k). For that, we use the generalized Green’s
function of neutral gluons. It reads (in the Lorentz—
Feynman gauge) [5, 6]
(GZ4)_1 =k - H44(k4a k)’ (13)
where T144(k?) is the 4—4 component of a polarization
tensor. For ky = 0, k — 0, it defines Debye’s temper-
ature mass having the order m% ~ ¢g*T. This mass
is responsible for the screening of the Coulomb color
fields.

The component of interest G}, taken at zero mo-
menta reads |5, 6]

1
Gizx(}? =0)= m2
D

(14)
Using the vertex of interactions in Eq. (12) and
Egs. (6), (14), we obtain

A 1993
z(tp.) — _ 4 lnd. 15
27 m2, (15)

Substituting this result in Eq. (12), we conclude
that the resummation of tadpole insertions results in

3

the replacement g4y — gAg + g% in the initial
D

propagator.

3. Potentials of Classical Color Fields

The presence of the induced color charges in the
plasma leads to the generation of classical gluon po-
tentials. To describe this phenomenon, we introduce
a simple model motivated by heavy-ion collisions. In
this case, the plasma is created for a short period
of time in a finite space volume which has a much
smaller size in the direction of collisions compared to
the transversal ones.

We consider the QGP confined in the plate of the
size L in the z-axis direction and infinite in the z-,
y-directions. For this geometry, we calculate the clas-
sical potentials ¢* = G3%,¢% = G by solving the
classical field equations for the gluon fields G3, G%
generated by the induced charges Q3 ;, Q% ;. In do-
ing so, we account for the results of Refs. [5,6], where
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the gluon modes at the Ay background were calcu-
lated. For our problem, we are interested in the lon-
gitudinal modes of the fields G3,G§ that have tem-
perature masses ~ 2772,

The classical potential ¢° is calculated from the
equation

2 —mp| 6= (16)
83&2 D - ind*

Making Fourier’s transformation to the momentum
k-space, we derive the spectrum of modes — k3 =
= k2 + k2 + k2 + m3, where k2 = (37)%1% and | =
= 0,%1,+2,.... The discreteness of k. is due to the
periodic boundary condition for the plane: ¢3(z) =
= ¢?(2 + L). The general solution to Eq. (16) is

(;53(1,47){) =d+a e—i(k4w4—kx) +b ei(k4w4—kx). (17)

In the case of zero induced charge, d = 0, and we have
two well-known plasmon modes. In the case of Q3 , #
= 0, the values a, b, d calculated from the confinement
boundary condition

result in the expression
5, Q34 cos(k,z)
¢°(2) m?, 1= cos(k,L/2) | (19)

The generated potential depends on the z-variable
only. There are no dynamical plasmon states at all.
The same result follows for the potential ¢8(z). This
is the main observation. In the presence of the in-
duced charges, the static classical color potentials
have to be realized in the plasma.

For applications, it is also necessary to get the
Fourier transform ¢3(k) of potential (19). Fulfilling

that for the interval of z[—%, %}, we obtain

3.8 Q3 4L sin(kL/2) k2
¢ (k) = m2, (kL/2) k2 — k2’ (20)

where the values of k, are given by Eq. (16).
The energy for a mode with momentum k, is pos-
itive and equals

3 )2 1.2 3 )2 2
El:( ind) kzL:( ind) 2Ll2

4 ? 4

(21)
mp mp L
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The total energy is given by the sum over [ of energies
(21). Similar results hold for the potential ¢S.

Thus, in the presence of the induced charges, the
static gluon potentials with positive energy should
be generated. This is a consequence of condition
Eq. (18). Obviously, such a situation is independent
of the specific form of the bag, where the plasma is
confined. In general, we have to expect that the color
static potentials @3, #® should be present in the QGP
that results in a new type of processes.

4. Effective vyG vertices in QGP

Other interesting objects, which have to be gener-
ated in QGP with the Ay condensate, are the effec-
tive three-line vertices yyG?,vyG®. They also should
exist due to Furry’s theorem violation and relate the
colored and white states. These vertices, in particu-
lar, lead to observable processes such as the inelas-
tic scattering of photons, splitting (or conversion) of
gluon ¢3, ¢® potentials in two photons.

In this and next sections, we calculate the vertex
vyG? and investigate the mentioned processes.

Let us consider the vertex I/, corresponding to
the diagram depicted in the plot. The second diagram
is obtained by changing the direction of the quark
line. We set that all the momenta are ingoing, the
first photon is 71 (k},), the second photon is 72 (k3), a
color a = 3 gluon — Q3(k2), and k' + k? + k3 = 0.
k123 are the momenta of external fields.

We consider the contributions coming from the
traces of four «-matrices, which are proportional to
the quark mass and dominant for small photon mo-
menta k', k* < m. The analytic expression (common
factor is e2gm) is

v RS = TV (R + TP (R D), (22)
where
ro (6 k) =

1 d? N
Z*Z/ b M ()
B<<) (2m)° D(P)D(P — k')D(P + k?)

Here, the summation is over py = %’T(l +1/2),1 =0,
41,42, ..., the integration is over three-dimensional
momentum space p, N1 denotes the numerator com-
ing from the first diagram, P = (154 = p4s — Ao, P),
D(P) = (ps — Ao)? + p> + m? = P} + €2, and e =

DI

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

Y

=p?+m?is the squared energy of a free quark. The
functions D(P — k'), D(P+k?) assume a correspond-
ing shift in the momentum. The numerator N; is

(Nl);w)\ = 5#11(15 - k2)A +

+6/\V(P_k2)u+6p,/\(ﬁ_q)ua (24)

where ¢ = k3 — k' is the photon momentum trans-
ferred.

The expression for the second term in (22) comes
from the second diagram and can be obtained from
(23), (24) by the substitutions k' — —k!, k? — —k2,
q — —q. We denote the second numerator by N. In
what follows, we carry out actual calculations for the
first term in (22) and adduce the results for the second
one.

Now, we consider the fact that, in the high tem-
perature limit, the large values of the integration mo-
mentum p give the leading contribution. Therefore,
we can present the functions

D(P), D(P—k'), D(P+Ek

in the form:

D(P) =P} + & = P,

- - 2Pk — k2
D(P — k') = P2 (1 - M) (25)

- - 2P k3 4 k3

3\ _ p2 3

D(P+ k) =P (1+7152 )

with k2 = (k})? + k3, k3 = (k3)? + k3. At high tem-
perature and P2 — oo, the k-dependent terms are
small. So, we can expand in these parameters. Now,
the integrand in Eq. (23) reads

Intd, = 1|4 3 A 2
ntd. = 8 +§ ils (26)
where - ) )
1= PQ 3 2 — P2 )
757



V. V. Skalozub

(PE')? + (PK3)?
P2

As=4

i

(27)
and the vector g, = (¢4, Q).
For the second diagram, we have to substitute ¢ —
— —q, other terms are even and do not change.
Further, we concentrate on the scattering of pho-
tons on the potential Q3 in the medium rest frame
and set the thermostat velocity w, = (1,0),rv = 4.
The corresponding terms in the numerators are

Ny = 8,0 (P+q)a, No— 3un(P —q)a. (28)

In this case, Py = py — Ag and P? = (pa — Ag)? + 612).
We have to calculate, in general, the series of two
types corresponding to these numerators:

n 1
s = 3
Pa

n = 3,4,5.
These functions can be calculated from the S§1)

- A n 1
Y2 0 S( ) _ q4 (29)

(P2)n’ 2 B - (P2)n’

and Sél), by computing a number of derivatives with
respect to ef). The latter series result in simple expres-
sions. First is the one calculated already for the tad-
pole diagram Eq. (10). But now, we have to change

the sign Ay — —Ag. The function Sél) is

g _ 1 QG Q@ sinh(e,f)

2 8 - P2 2¢, cos(Agf) + cosh(e,B) (30)

Let us adduce the expressions for A; obtained after
some simplifying algebraic transformations:

A = 4%%”4, (31)
Ag__% (1_1272;2) kiki’Jr%, (32)
A== (1 - P) (k)2 + (k)2 +

L k1>2;<p k?,)?]. (33)

Finally, the resulting amplitude consists of the terms

pa— A
(P2)3

My = 26,5 (1+ Ay + A3 + Ay) (34)
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and ,
My = 4%%. (35)
(P2)*
Thus, all the contributions of the Sgn) series are
cancelled in the total. Now, we turn to the d3p
integration.

We present calculation of high temperature asymp-
totic considering the first term in Eq. (34) which is
calculated as the second derivative of S §1) over €2 and
equals to

Sy = —Aof sech(fBe,/2)*

61p7 (—20¢p +

+ Bepcosh(Be,) + sinh(Bep)). (36)

Performing integration in the spherical coordinates
and taking the leading order approximation, €,5 =

= pB, we get

I3 = / d*p Sz = —Agm3 (0.3348). (37)

In such a way all the other integrations in Egs. (34),
(35) can be carried out.

5. Scattering of Photons on the Potentials

Relations (19), (20) give the calculated expressions
for the potential Q3 = ¢ in the plasma plate. Here,
we consider the scattering of photons on potential
(20). Let us denote the momenta of ingoing and out-
going photons as k, and k3, respectively. The matrix

element of the process is
o1

e _ e73
M = (2m)*o(k' + K — k%) —E= ¢’ T\ —2=.
(2m)70( ) g @ Tx o
Here, €, €72 are polarization amplitudes of pho-
tons, and wi,ws are the corresponding energies,
L4y (k' k) is the effective vertex calculated in the
previous section.
We assume that the beams are not polarized,
Dos Enten == Opurs 3, €3°eS? = dav. Then the
probability

(38)

C

S(k*+ k%2 — K3
4w1w3 ( + )’

P =MM*=(¢*(k))* T)xIa
(39)

where C' is some nonrelevant number. In this expres-
sion (accounting for the momentum conservation),
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ws = [(wh)? + (w))? + (w! + £k2)?]"/2. The value of
k? is a free parameter of the problem. It indicates the
point, at which the actual scattering happens in the
z-plane. Since this is not known, we have to sum up
the probability over k2, i.e., over [. In this expres-
sion, all the parameters and functions are known. So,
the scattering on the induced color potentials can be
calculated. Analogous process has to happen for the
classical field ¢®(k). This kind of scattering drasti-
cally differs from that for the plasma consisting of
free chaotically moving particles.

Another related process is the conversion of clas-
sical gluon fields ¢3(k), ¢%(k) in two photons com-
ing out from the QGP due to the effective vertex

ZA(kl, k3). In the rest frame of the plasma, two pho-
tons moving in opposite directions and having spe-
cific energies, which correspond to the energy levels
E; Eq. (21), have to be observed. The amplitude is
described by Eq. (38) with corresponding changes of
momenta.

6. Conclusions

We have demonstrated that, in QGP with the Ay con-
densates, the induced color charges Q3 ;,QP ; and
the static classical gluon fields ¢3,¢® have to be
present. This results in specific new phenomena. In
particular, the conversion of gluons in photons hap-
pened due to the effective I'} | vertex could influence
the exit of direct photons from the plasma.
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B. Ckxanosyb

IHJIYKOBAHI KOJILOPOBI 3APSI/IN,

E®EKTUBHA ~yG-BEPIINHA Y KBAPK-IJIIOOHHI
[LJIA3ML 3ACTOCYBAHHSI IO 3ITKHEHD
BAJKKUX IOHIB

PesmowMme

Mu obuunciroeMo iHIYKOBaHI KOJIBOPOBi 3apsiau Q?n a4 Q?n q T2
eeKTUBHY Y — y-TJIFOOH BEPIIUHY, siIKi PEHEPYIOThCS Y KBapK-
IJIIOOHHIH m1a3Mi B IpUCYyTHOCTI A KOH/IEHCATY BHACJIIOK IO~
pyuieHHsi Koybopopol C-mapHocTi B Takux ymoBax. Jljs imi-
Talil 31TKHEHHS BaXXKUX AJ€p MH PO3IVIAJaE€MO MOJIEJIb IIjla-
3MH, 110 3HAXOIUTHCS BCePeseHl By3bKOI IIJIACTUHHU HeoOMerKe-
HUX IIONEPEeYHNX pO3MipiB. [[yisi TaKUX yMOB MM OTPUMYEMO
[OTeHIa N KJIACHYHUX TJIIOOHHUX IOJIB @5, ¢S, M0 BUHUKA-
IOTh y NPHUCYTHOCTI iHJ[yKOBaHUX 3apsAaiB. Y sIKOCTi 3aCTOCyBa-
HHS PO3IVISJAIOTHCS JIBa IPOIECH — pO3CitoBaHHsA (DOTOHIB Ha
mJ1a3Mi Ta KOHBEPTallis KJIACHYHUX [VIIOOHIB y ABa (pOTOHU, 110
BUIIPOMIHIOIOTBCH i3 IIJIA3MU.
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POMERON-POMERON SCATTERING

The central exclusive diffractive (CED) production of meson resonances potentially is a factory
producing new particles, in particular, a glueball. The produced resonances lie on trajectories
with vacuum quantum numbers, essentially on the pomeron trajectory. A tower of resonance
recurrences, the production cross-section, and the resonances widths are predicted. A new fea-
ture is the form of a non-linear pomeron trajectory, producing resonances (glueballs) with in-
creasing widths. At LHC energies, in the nearly forward direction, the t-channel both in elastic,
single, or double diffraction dissociations, as well as in CED, is dominated by the pomeron
exchange (the role of secondary trajectories is megligible, however a small contribution from

the odderon may be present).

Keywords: Regge trajectory, pomeron, glueball, CED, LHC.

1. Introduction

The central exclusive diffractive (CED) produc-
tion continues attracting attention of both theo-
rists and experimentalists (see, e.g., [1] and refer-
ences therein). Interest in this subject is triggered by
LHC’s high energies, where even the subenergies at
an equal partition is sufficient to neglect the contribu-
tion from secondary Regge trajectories. Consequent-
ly, CED can be considered as a gluon factory to pro-
duce exotic particles such as glueballs.

Below, we will study CED shown in Fig. 1 with
topology 4. Its knowledge is essential in studies with
diffractive excited protons, topologies 5 and 6.

In the single-diffraction dissociation or single dis-
sociation (SD), one of the incoming protons dissoci-
ates (topology 2 in Fig. 1), in double-diffraction dis-
sociation or double dissociation (DD), both protons
dissociate (topology 3), and, in central dissociation
(CD) or double-Pomeron exchange (DPE), none of
the protons dissociates (topology 4). These processes
are tabulated below as

SDpp — Xp

orpp — pY

DDpp — XY

CD (DPE) pp — pXp,
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where X and Y represent diffractive dissociated
protons.

2. Pomeron/Glueball Trajectory

Regge trajectories a(s) connect the scattering region,
s < 0, with that of particle spectroscopy, s > 0. In
this way, they realize the crossing symmetry and an-
ticipate the duality, i.e., the dynamics of two kine-
matically disconnected regions is intimately related:
the trajectory at s < 0 should “know” its behavior in
the cross channel and vice versa. Most of the familiar
meson and baryon trajectories follow the above regu-
larity: with their parameters fitted in the scattering
region, they fit the masses and spins of relevant reso-
nances, see, e.g., [2]. The behavior of trajectories both
in the scattering and particle regions is close to lin-
ear, which is an approximation to reality. Resonances
on real and linear trajectories imply unrealistic in-
finitely narrow resonances. Analyticity and unitarity
also require that the trajectories be non-linear com-
plex functions [3,4]. Constraints on the threshold and
asymptotic behaviors of Regge trajectories were de-
rived from dual amplitudes with Mandelstam ana-
lyticity [4]. Accordingly, near the threshold (see also
[5-71)

Sma(s)s_ssy ~ (5 — s0)250)F1/2, (1)
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while the trajectories are constrained asymptotically
by [4]

a(s)
Vslns

The above asymptotic constrain can be still low-
ered to a logarithm by imposing (see [8] and ear-
lier references) the wide-angle power behavior for the
amplitude.

The above constrains are restrictive, but still leave
much room for the model building. In Refs. [9, 10],
the imaginary part of the trajectories (resonances’
widths) was recovered from the nearly linear real part
of the trajectory by means of dispersion relations and
fits to the data.

While the parameters of meson and baryon tra-
jectories can be determined both from the scatter-
ing data and from the particle spectra, this is not
true for the pomeron (and odderon) trajectory, known
from fits to scattering data only (negative values of
its argument). An obvious task is to extrapolate the
pomeron trajectory from negative to positive values
to predict glueball states at J = 2,4,... was not
solved. Given the nearly linear form of the pomeron
trajectory, known from the fits to the (exponential)
diffraction cone, little room is left for variations in the
region of particles (s > 0.) The non-observability of
any glueball state in the expected values of spins and
masses may have two explanations: 1. glueballs ap-
pear as hybrid states mixed with quarks, which makes
their identification difficult; 2. their production cross-
section is low and their widths is large. To resolve
these problems, one needs a reliable model to pre-
dict cross-sections and decay widths of the expected
glueballs, in which the pomeron trajectory plays a
crucial role.

Models for the pomeron/glueball trajectories were
proposed and discussed in quite a number of pa-
pers [11-14]. They range from simple phenomeno-
logical (also linear) models to quite sophisticated
ones, involving QCD, lattice calculations, extra di-
mensions, etc. The basic problem of the production
cross-sections and the decay widths of produced glue-
balls in the cited papers remains open. Close to the
spirit of the present approach are papers [12-14],
where the pomeron/glueball trajectory, including the
threshold singularities is manifestly non-linear, and
the real part terminates.

< const. (2)
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Fig. 2. Pomeron-pomeron total cross-section in CED calcu-
lated in Ref. [1]

o

We continue the lines of researches initiated in
Refs. [1,15] in which an analytic pomeron trajectory
was used to calculate the pomeron-pomeron cross-
section in the central exclusive production measur-
able in the proton-proton scattering, e.g., at the
LHC. The basic idea in that approach is the use of a
non-linear complex Regge trajectory for the pomeron
satisfying the requirements of the analytic S-matrix
theory and fitting the data. Fits imply high-energy
elastic proton-proton scattering data. For the scat-
tering amplitude, the simple and efficient Donnachie—
Landshoff model [16] was used. The essential differ-
ence with respect to many similar studies lies in
the non-linear behavior of the trajectories. They af-
fect crucially the predicted properties of the res-
onances. Our previous papers [1, 15] contain more
than that: the fitted trajectories are used to cal-
culate pomeron-pomeron scattering cross-sections in
the central exclusive diffraction at the LHC. Figure 2
shows the result of those calculations.
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Papers [1, 15] contain detailed analyses and fits
of both the pomeron and non-leading (also com-
plex!) Regge trajectories, the emphases being on the
pomeron/gluon one. In the present study, we revise
the basic object, namely the model of a pomeron tra-
jectory, postponing other details (secondary reggeons,
CED, etc.) to a forthcoming study.

2.1. Scattering amplitude,
cross-sections, resonances

In Ref. [1], the contribution of resonances to the
pomeron-pomeron (PP) cross-section was calculated
from the imaginary part of the amplitude with the
use of the optical theorem:

PP(M?) =Qm A(M?, t =0) =

:CLZZJ %ea

i=f,P J

)7+ Sm oo (M?)
M?))% + (Sm a;(M?))*
(3)

In this section, we concentrate on the pomeron. In
this case, Eq. (3) reduces to

k7+2 Sm a(M?)

az (J — Re a(M?))2 + (Sm

PP
7 (P
(4)
where k = f;(0), and, for simplicity, we set k = 1.
We start by comparing the resulting glueball spec-
tra in two ways: first, we plot the real and imaginary
parts of the trajectory (Chew—Frautchi plot) and cal-

culate the resonances’ widths by using the relation
(see, e.g., Eq. (18) in [15])

28mal(s)

a’(s)]
= dRea(\/s)/d\/s.

2.2. Analytic Regge trajectories

[(s=M?) = (5)

where o/ (s)

In the previous studies [1, 15, 18], the following two
types of trajectories were considered:

a(s) = ap + a8 + az(+v/so — s — v/S0), (6)
and

als) = ag+ az(Vso — s = v/50) + (V51 — s—/51),
(7)
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In trajectory Eq. (7), the second, heavy threshold
was introduced to mimic the nearly linear rise of the
trajectory for s < s1, avoiding an indefinite rise as in
Eq. (6), thus securing the asymptotic square-root up-
per bound (2). As realized in Refs. [1, 15], these tra-
jectories result in “narrowing” the resonances (here,
a glueball) whose widths decrease, as their masses
increase. Below, we show that this deficiency is reme-
died in a trajectory that satisfies the constraint of
the analytic S-matrix theory, namely, the threshold
behavior and asymptotic boundedness, and produces
fading resonances (glueballs), whose widths are rising
with mass.

The trajectory is:

a+ bs
1+c(y/s0o—s—+/s0)

where sp = 4m2, and a,b,c are adjustable param-
eters, to be fitted to scattering (s < 0) data with
the obvious constraints: a(0) ~ 1.08 and o/(0) ~ 0.3.
Trajectory Eq. (8) has square-root asymptotic behav-
ior, in accord with the requirements of the analytic
S-matrix theory.

With the parameters fitted in the scattering region,
we continue trajectory Eq. (8) to positive values of
s. When approaching the branch cut at s = sg, one
has to choose the right Riemann sheet, For the s > sg
trajectory Eq. (8) may be rewritten as

as) =

as) =

(8)

a+bs
1 — c(iy/s — s0 + /50)
with the sign “minus” in front of ¢, according to the
definition of the physical sheet.
For s > s, |a(s)| — %\/m For s > s¢ (on the
upper edge of the cut), Sma > 0.
The intercept is a(0) = a, and the slope at s = 0 is

(9)

ac
2y/s0
To anticipate subsequent fits and discussions, we
note that the presence of the light threshold sg = 4m?2
(required by unitarity and the observed “break” in the
data) results in the increasing, compared with the
“standard” value of ~ 0.25 GeV~2, intercept.

o/ (0) = b+ (10)

2.3. Simple Regge-pole fits
to high-energy elastic scattering data

High-energy elastic proton-proton and proton-anti-
proton scatterings, including ISR and LHC energies,
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were successfully fitted with non-linear pomeron tra-
jectories Egs. (6) and (7) in a number of papers, see
[17] and references therein. Here, we are interested in
the parametrization of the pomeron (and odderon)
trajectories, dominating the LHC energy region, and
concentrate on the LHC data, where the secondary
trajectories can be completely ignored in the near for-
ward direction.

At lower energies (e.g., at the ISR), the diffrac-
tion cone shows the almost perfect exponential be-
havior corresponding to a linear pomeron trajectory
in a wide span of 0 < —t < 1.3 GeV?, which is vio-
lated only by the “break” near t ~ —0.1 GeV?2. At the
LCH, it is almost immediately followed by another
structure, namely, by the dip at t ~ —0.6 GeV2. The
dynamics of the dip (diffraction minimum) has been
treated fully and successfully [18]. However, those de-
tails are irrelevant to the behavior of the pomeron tra-
jectory in the resonance (positive s) region and the
expected glueballs there, that depend largely on the
imaginary part of the trajectory and basically on the
threshold singularity in Eq. (8).

In Fig. 3, we show a fit to the low-|¢| elastic proton-
proton differential cross-section data [19] at 13 TeV
with a simple model:

Ap(s,t) = apebpte_”ap(t)m(s/sop)“”(t), (11)
where ap(t) is given by Eq. (8) (changing the variable
s to the variable ¢).

We used the norm

do

T (12)

T
= SlAp(s, )P,

Figure 4 shows the normalized form of the differ-
ential cross-section (used by TOTEM [19]) illustrat-
ing the low-|¢| “break” phenomenon [17] related to
the non-linear square-root term in the pomeron tra-
jectory. However, it should be also noted that the
“break” may be resulted from the two-pion thresh-
old both in the trajectory and the non-exponential
residue, as discussed in [17].

2.4. Extrapolating the pomeron
trajectory to the resonance region, s > 0

Fitting to the measured pp scattering data, the val-
ues of the pomeron trajectory parameters became
known. Changing back the variable t to the variable
s (crossing symmetry), we can extrapolate now the
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pomeron trajectory to the resonance region, s > 0.
Figures 5 and 6 show, respectively, the real and imagi-
nary parts of the trajectories (during the calculations,
the trajectory parameter values are taken from the fit
shown in Fig. 3). Figure 5 shows the glueball spectra
lying on the pomeron trajectory. Such glueballs have
even integer spins (J = Reap(s) = 2, 4, 6, ...) and
mass square M? = s.

In Figs. 8 and 7, we can see, respectively, the res-
onance width and the pomeron-pomeron total cross
section.

3. Summary

Using a simple pomeron pole model fit to the 13-TeV
pp low-|t| differential cross-section data, we have ex-
trapolated the pomeron trajectory from negative to
positive values to predict glueball states at J = 2, 4,
6, 8, 10, and 12. We have predicted also the cross-
sections and decay widths of the expected glueballs.
Applying the pomeron trajectory Eq. (8), we have
obtained such resonances (glueballs) whose widths in-
crease with their masses.
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ing discussions provided by the Conference. We thank
also Ldszlo Jenkovszky for his guidance during the
preparation of the manuscript. The work of 1. Szanyi
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IIOMEPOH-TIOMEPOHHE PO3CIFOBAHHSA
Peswowme

Henrpanbre ekckitosusHe qudpaxniiine (LIE/) vapom:keHHs
ME30HHUX DPE30HAHCIB MOTEHIIHHO MOxe OyTu (HhabpUKO0 HO-
BUX YACTHHOK, 30KpeMa IiiobosiB. OTpuMani pe30HAHCH JIsAra-
IOTh Ha TPAEKTOPIl 3 BAKYYMHUMM KBAHTOBUMH UHCJIAMU, T~
PEBazKHO Ha TPAEKTOPi0 noMepoHa. OTPUMAHO IMUPUHUA PE30O-
HaHCIB Ta TxHi#l monepeuynwmii nepepis. HoBowo ocobsusicTio €
BUKOPHUCTaHHs HEJHIAHOI TpPaeKTOpil JJIA IOMepOHa, IO IPOo-
nyKye pesoHancu (ro6osm) 3i 3pocraiodoro mmpuHooo. [Ipu
eneprisx BAK, y maii>ke IpsiMOMy HaIIPsAMKY B {-KaHaJIl SK IPU
IPY>KHUAX — OJIMHAPHOI 4M HOABINHOI JudpakIiifHOl quconiartii,
tak i B IIEJ] nominye oOMiH moMepoHaMyu (BIIJIMB BTOPUHHUX
TPAEKTOPil HEXTOBHUI, X04a MOXKJIMBE BPAaXyBaHHsI HEBEJIUKO-
ro BHECKY OJIZIEPOHA).
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SEARCHING FOR THE QCD CRITICAL POINT
WITH NET-PROTON NUMBER FLUCTUATIONS

Net-proton number fluctuations can be measured experimentally and, hence, provide a source of
important information about the matter created during relativistic heavy ion collisions. Parti-
cularly, they may give us clues about the conjectured QQCD critical point. In this work, the
beam-energy dependence of ratios of the first four cumulants of the met-proton number is
discussed. These quantities are calculated using a phenomenologically motivated model in which
critical mode fluctuations couple to protons and antiprotons. Our model qualitatively captures
both the monotonic behavior of the lowest-order ratio, as well as the non-monotonic behavior
of higher-order ratios, as seen in the experimental data from the STAR Collaboration. We also
discuss the dependence of our results on the coupling strength and the location of the critical

point.

Keywords: net-proton number fluctuations, QCD critical point, heavy-ion collisions.

1. Introduction

The theoretical and experimental investigations of
the phase diagram of strongly interacting matter are
an important subject of modern high-energy physics.
One of the unresolved questions concerns the exis-
tence and location of the QCD critical point (CP) in
the T and p planes. Strong fluctuations of the critical
mode, o, in the vicinity of CP, although not directly
observable, are expected to couple to physically mea-
surable quantities such as fluctuations of conserved
charges [1, 2].

Fluctuations of the net-proton number serve as an
experimental probe of baryon number fluctuations.
Recent, but still preliminary results of the STAR
Collaboration [3-5] show a non-monotonic beam en-
ergy dependence of the ratios of higher-order net-
proton number cumulants. However, the interpreta-
tion of the data is still unclear [6-9]. Therefore, effec-
tive models are needed to improve our understanding
of these quantities.

One of such models was developed in [10], where
the impact of resonance decays on net-proton num-

© M. SZYMANSKI, M. BLUHM, K. REDLICH,
C. SASAKI, 2019
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ber cumulant ratios was studied. This model could
qualitatively describe the non-monotonic behavior of
the C3/Cy and C4/C5 ratios. However, it also showed
a strong non-monotonic behavior of the Cy/Cj ratio
which is not observed experimentally. Recently, this
model was re-examined [11] to account for the scaling
properties of the baryon number and chiral suscepti-
bilities obtained within effective models {12, 13]. This
reduces the effect of critical fluctuations in the net-
proton number variance and, thus, allows for a better
description of the STAR data.

Here, we discuss the beam energy dependence of
the ratios of net-proton number cumulants obtained
using the refined model from Ref. [11] and study
their dependence on the coupling strength between
the critical mode and (anti)protons, as well as their
dependence on the location of the critical point.

2. Model Setup

As a baseline model to calculate the net-proton num-
ber cumulants, we choose the hadron resonance gas
(HRG) model in which the number density of each
particle species is given by the ideal gas formula,
d3k
i(Tops) = di | =z [P (T, i) 1
n(T.gu) = ds [ Gz 0T ) (1)
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Here, d; is the degeneracy factor, and

1
0 _
S e T @

is the equilibrium distribution function, where F; =
= /p?+m? is the dispersion relation, and p; =
= Biup + Sips + Qipg is the chemical potential
of a particle with mass m;, baryon number B;,
strangeness S;, and electric charge Q;; ugp, pg and
s denote the baryon, strangeness and charge chem-
ical potentials.

Since the QCD pressure is approximated in the
HRG model by a sum of partial ideal gas pressures
corresponding to different particles, there are only
thermal fluctuations in this approximation. To in-
clude critical fluctuations on the top of thermal ones,
we follow the phenomenological approach employed
in Ref. [10]. In this approach, the particle mass is
assumed to be composed of critical and non-critical
parts as suggested in linear sigma models,

mi ~ mo + gi0, (3)

where my is a non-critical contribution, and g; is the
coupling strength between the critical mode and the
particle of type 4. Critical mode fluctuations modify
the distribution function into fi = f° + 0f;, where
a change of the distribution function due to critical
mode fluctuations reads

afi 9 v}
;= = — = 4
Ofi 5 iéml T o, (4)

with v? = f2((=1)Pi f2 + 1) and v; = E;/m;.
Fluctuations of the particle number in the thermal

medium can be quantified in terms of cumulants. The

n-th order cumulant of the i-th particle species reads

8"_1 (ni/TZi)
s /T)" " |

where the temperature T is kept constant. In this
work, we consider the first four cumulants of the net-
proton number, N,_5; = N, — N, which are given
by [10]

ct=vT? (5)

C, = CP + (-1)"CP +
+(=1)"((Vdo)™)e(mp)™ (Jp — Jp)", (6)

where C? and CP are the n-th order proton and
antiproton cumulants obtained within the baseline
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model, respectively, ((Vdo)™). is the n-th critical
mode cumulant, and

d 3k 1
L=7 | G- (7)

Moreover, the contributions of other particles and res-
onance decays are neglected.

In general, cumulants of the critical mode cannot
be calculated analytically. Following the approach in-
troduced in Ref. [10], we model them using the uni-
versality class arguments which state that different
physical systems belonging to the same universality
class exhibit the same critical behavior close to the
critical point [14]. Under the assumption that QCD
belongs to the same universality class, as the three-
dimensional Ising model [16-18], we can identify the
QCD order parameter, o, with the magnetization,
M7y, the order parameter of the spin model. Hence,
the critical mode cumulants can be written as [10]

; (8)

r

. T\ oMy
N I =

where r = (T — T.)/T, is the reduced temperature,
and h = H/Hy is the reduced magnetic field. The
critical point is located at r = h = 0.

In the net-proton number cumulants, the singular
part of the second cumulant receives a contribution
from the first derivative of the order parameter with
respect to the reduced magnetic field,

OM;

C;mg' x

The right-hand side of this equation is the mag-
netic susceptibility of the Ising model which, due to
universality, can be identified with the chiral sus-
ceptibility of QCD. However, Cy is related to the
baryon number susceptibility which is known to di-
verge weaker than the chiral one [12, 13, 19]. There-
fore, the model introduced in Ref. [10] requires some
modifications [11]. This can be done using the fol-
lowing relation obtained by calculations within the
effective model on the mean field level [12, 13]:

reg

XMM = XMU + O.QXChiI‘ala (10)

in which the singular contribution to the baryon num-
ber susceptibility is proportional to the chiral suscep-

tibility times the squared order parameter, and x,?

767



M. Szymarski, M. Bluhm, K. Redlich et al.

160

140
Q

= 120

— — transition region: lattice QCD

100F —— chem. FO: A. Andronic et al. (2018) b <

70
pg[MeV]
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is the regular part of the baryon number susceptibil-
ity. To obtain such a form of the second cumulant,
the proton mass in Eq. (6) should be replaced by the

order parameter, o, such that the new Cy reads
Cy = CY + CY + g*0c* (Vo)) (T, — Jp)*. (11)

The modified higher-order cumulants are

Cy = Cf = CF — g°0*((Véa)")(J, — Jp)° (12)
and
Cy=CP 4+ C¥ + g* (Vo)) (J, — Jp). (13)

Since the cumulants are volume-dependent, it is con-
venient to consider their ratios in which this depen-
dence cancels out,

CQ 0'2 Cg C4 2

f2_2 U _g, Zi_,n2 14
M G 07 e, (14)
where M = () is the mean, 02> = (5 the vari-

ance, £ = C4/C3 the kurtosis, and S = 03/023/2
the skewness.

To use the universality class arguments discussed
above, a mapping between the QCD phase diagram
and the reduced temperature and a magnetic field
of the spin model is needed. Such a mapping is non-
universal and has to be modeled for each system sep-
arately. In this work, we use a linear mapping [20, 21]
in which the critical point is located at r = h = 0,
the r axis is tangential to the QCD first-order phase
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transition line, and the positive direction of the h axis
points toward the hadronic phase. Schematically, this
is shown in Fig. 1, where the green line denotes the
first-order phase transition, and the filled band shows
lattice QCD constraints on the location of the chiral
crossover region.

To calculate the order parameter and its cumulants,
we use the parametric representation of the magnetic
equation of state [22]. For a more detailed discussion
of the mapping, lattice limits, and the magnetic equa-
tion of state, we refer the reader to the papers [10,11].

Finally, assuming that the matter created during a
heavy ion collision forms a thermal medium charac-
terized by the temperature and chemical potentials,
experimental data on event-by-event multiplicity fluc-
tuations can be compared with model results. To this
end, we calculate the net-proton number cumulants at
the chemical freeze-out. The chemical freeze-out con-
ditions used in this work were obtained by the anal-
ysis of hadron yields [23-28]. The blue line in Fig. 1
shows the recently obtained parametrization [15].

3. Numerical Results

In this section, we discuss numerical results on net-
proton number cumulant ratios obtained within the
current model. The set of model parameters includes
the coupling strength g between (anti)protons and the
critical mode, the parameters of the magnetic equa-
tion of state, as well as the size of a critical region in
the (T, u) plane. Their values and a detailed discus-
sion can be found in Refs. [10,11]. Moreover, the loca-
tion of the QCD critical point is unknown. To study
the effect of its position in the QCD phase diagram
on the refined model results, we consider three differ-
ent locations of the CP listed in Table and shown in
Fig. 2, where the distance to the freeze-out curve is
the farthest for CP; and closest for CPs.

The first step of our discussion is the comparison
between the C3/C; ratio obtained using the model
from Ref. [10], where the n-th net-proton number cu-
mulant is given by Eq. (6), and the refined model [11]
for the critical point location CP;. This is shown
in Fig. 3. Results obtained using the original model
exhibit a clear non-monotonic behavior and deviate
strongly from the non-critical baseline (the black-
dotted line) even for the small coupling, g = 3, which
becomes more pronounced for g = 5 (the red solid
and dashed lines, respectively). Using the current ap-
proach, we find a substantial reduction of the criti-
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Fig. 2. QCD critical point locations from Table plotted with
the chemical freeze-out curve [15] used in this work
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Fig. 3. Second to first net-proton number cumulant ratio for
g = 3 and 5 calculated following Ref. [10] (red solid and dashed
lines, respectively) compared to the refined model results [11]
(blue solid and dashed lines, respectively). The preliminary
STAR data on the net-proton number fluctuations [5] (squares
with the error bars containing both statistical and systematic
errors) and HRG baseline result (black dotted line) are also
shown for comparison

Locations of the QCD critical point

in the (up,T)-plane considered in this
work. These locations in the QCD phase
diagram are shown in Fig. 2

CP, fiep [MeV] Tep [MeV]
1 390 149
2 420 141
3 450 134

cality in the C3/C} ratio even for larger values of g
(see the blue curves in Fig. 3). The refined model re-
sults for the Cy/C ratio agree with the experimental
data from the STAR Collaboration [5]. On the other
hand, the original model would require an exception-
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Fig. 4. Ratios of net-proton number cumulants calculated in
the refined model [11] for the fixed coupling g = 5 and for
different locations of the QCD critical point (listed in Table)

ally small coupling strength in order to capture the
experimentally observed behavior.

The net-proton cumulant ratios obtained in the re-
fined model for different locations of the critical point
(as listed in Table) and with a fixed value of the cou-
pling, g = 5, are shown in Fig. 4. We find that a
non-monotonic behavior of the cumulant ratios be-
comes more pronounced, when the critical point is
closer to the freeze-out line. Moreover, the deviation
from the non-critical HRG baseline becomes larger
for higher-order cumulant ratios.

Finally, Fig. 5 shows the coupling strength depen-
dence of the net-proton number cumulant ratios ob-
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Fig. 5. Ratios of net-proton number cumulants calculated in
the refined model [11] with CP3 and for the coupling strengths,
g =3, 4 and 5 (orange solid, green long-dashed, and red dash-
dotted lines, respectively). The preliminary STAR data on
the net-proton number fluctuations [5] (squares with the er-
ror bars containing both statistical and systematic errors) and
HRG baseline results (black dotted lines) are also shown for

comparison

tained for CP3. We find a strong g dependence of all
ratios. This is expected, since, in our refined model,
the n-th cumulant scales as g*", according to Eqgs. (7)
and (11)—(13). When our model results are compared
to the STAR data [5], we find a qualitative agreement
with the Cy/Cy and C4/C5 ratios. On the other hand,
the C5/C5 ratio does not follow the systematics seen
in the data, i.e., our model results overshoot the HRG
baseline, while the data stay below.
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Our results suggest that the appropriate choice of
model parameters, as well as the location of the QCD
critical point, allows us to describe some of the exper-
imentally observed cumulant ratios. Especially, the
smooth dependence of C3/C and the strong increase
of Cy4/C5 at low beam energies, /s < 20 GeV, seen
by the STAR Collaboration, suggest that the QCD
critical point may be located close to the freeze-out
curve. However, in this case, the C3/Cy ratio should
increase beyond the non-critical baseline, which is not
seen in the experimental data. Therefore, it seems
unlikely that the QCD critical point is close to the
freeze-out curve. This conclusion requires, however,
additional theoretical and experimental justifications
due to uncertainties in the model parameters as well
as in the experimental data.

4. Conclusions

We have presented the ratios of net-proton num-
ber cumulants obtained within an effective model in
which the coupling between (anti)protons and crit-
ical mode fluctuations is introduced by connecting
the particle masses to the order parameter. We have
modified the existing approach [10] to account for the
correct scaling properties of the baryon number sus-
ceptibility, as dictated by the universality hypothesis.

Model results were compared with the recent ex-
perimental data on net-proton number fluctuations
from the STAR Collaboration. We find a substantial
reduction of the signal coming from the presence of
the QCD critical point in the Cy/C} ratio which stays
in agreement with the experimental data. Moreover,
we find that the model discussed in the present work
allows us to describe some of the experimentally ob-
served features in the net-proton number cumulant
ratios. Particularly, the smooth dependence of Cy/Cy
and an increase in C4/Cy at lower beam energies
(v/s < 20 GeV) suggest that the critical point may
be located close to the freeze-out curve. However, the
experimentally observed C3/Cs ratio does not follow
the behavior expected from such a scenario.

Therefore, it seems unlikely that the QCD critical
point is located close to the phenomenological freeze-
out curve. However, because of uncertainties on both
theoretical and experimental sides, this statement re-
quires a further investigation.
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MIOIIYKU KPUTUYHOI TOYKU
KX/ 3 ©JIVKTYAIIEIO YUCJIA TTIPOTOHIB

Peswowme

@uryKTyallil IOBHOI'O YXCJIa IPOTOHIB MOXKHA BUMIPIOBATU €KC-

IIEPpUMEHTAJBHO, OTPUMYIOYN TaKHM YHUHOM BaXKJINBY iH(bOp—

MaIlilo IIPO PEYOBUHY, II[0 HAPOIKYETHCH IIiJ] Jac 3iTKHEHb pe-
JIATUBICTCHKUX 10HIB. 30KpeMa BOHA MOXKe MicTuTu iHdopma-
niro npo xpuruuny touky KXJI. B mamiit po6ori mu obroso-
PIOEMO 3aJIEXKHICTH BiJJHOIIEHD IIEPIINX YOTHPHOX KYMYJISIHTIB
YHCJIa IPOTOHIB BiJl eHepril crpyMeHnst YacTuHOK. Lli BesmmunHan

po3paxoBaHi 3a J0IIOMOro0 (PeHOMEHOJIOTTYHOI MO, B AKii
daykTyanil 3 KPUTHYHOIO MOJIOIO IIOB’sI3aHi 3 MPOTOHAMHU Ta
aHTHIpOTOHaMU. Hara Mojiesib IKiCHO BiZITBOPIOE SIK MOHOTOH-
HY IOBEJIHKY BiJIHOIIEHHS HAWHUKYUX MMOPSAIKIB, TaK i HEMO-
HOTOHHY IIOBEJIHKY BiJHOIIIEHb BHCOKHX IIOPS/JIKiB, SIK II€ CIIO-

crepiraerbea B pesyabrarax Kosabopanil STAR. Mu o6rosopro-

€MO TAKOXK 3aJIEXKHICTh HAIIUX Pe3yJIbTATIB BiJ CU/IM 3B 3Ky i

MiCIIE3HAXO/IPKEHHA KPUTUIHOI TOYKU.
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DIFFRACTIVE PHYSICS AT THE LHC

Diffractive processes possible to be measured at the LHC are listed and briefly discussed. This
includes soft (elastic scattering, exclusive meson pair production, diffractive bremsstrahlung)
and hard (single and double Pomeron exchange jets, v + jet, W/Z, jet-gap-jet, exclusive jets)
processes as well as Beyond Standard Model phenomena (anomalous gauge couplings, magnetic

monopoles).

Keywords: LHC, AFP, ALFA, TOTEM, pomeron, diffraction, exclusive processes, beyond

standard model.

1. Introduction

About a half of collisions at the LHC are of diffrac-
tive nature. In such events, a rapidity gap ! between
the centrally produced system and scattered protons
is present. Due to the exchange of a colorless object —
photon (electromagnetic) or Pomeron (strong interac-
tion) — one or both outgoing protons may stay intact.

Studies of diffractive events are an important part
of the physics program of the LHC experiments. The
diffractive production could be recognized by the
search for a rapidity gap in the forward direction or
by the measurement of scattered protons. The first
method is historically a standard one for the diffrac-
tive pattern recognition. It uses the usual detec-
tor infrastructure: i.e. tracker and forward calorime-
ters. Unfortunately, the rapidity gap may be de-
stroyed by e.g. particles coming from the pile-up —
parallel, independent collisions happening in the same
bunch crossing. In addition, the gap may be outside
the acceptance of a detector. In the second method,
protons are directly measured. This solves the prob-
lems of gap recognition in the very forward region
and a presence of a pile-up. However, since protons
are scattered at small angles (few hundreds microra-
dians), additional devices called “forward detectors”
are needed to be installed.

At the LHC, the so-called Roman pot technology
is used. In ATLAS [1], two systems of such detectors
were installed: ALFA [2,3] and AFP [4]. At the LHC
interaction point 5, Roman pots are used by CMS [5]
and TOTEM [6,7] groups. Since protons are scattered
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at small angles, there are several LHC elements (i.e.,
magnets and collimators) between them and the IP
which influence their trajectory. The settings of these
elements, commonly called machine optics, determine
the acceptance of forward detectors. The detailed de-
scription of the properties of optics sets used at the
LHC can be found in [§].

In both experiments, a large community works on
both phenomenological and experimental aspects of
diffraction. In this paper, the diffractive processes
possible to be measured will be briefly described.

2. Soft Diffraction

Collisions at hadron accelerators are dominated by
soft, processes. The absence of a hard scale in these
events prevents one from using perturbation theory.
Instead, in order to calculate the properties of the
produced particles such as the energy or angular dis-
tributions, one has to use approximative methods.

The elastic scattering process has the simplest sig-
nature that can be imagined: two protons exchange
their momentum and are scattered at small angles. At
the LHC, the measurement of protons scattered elas-
tically requires a special settings commonly named
the high-g8* optics. Properties of the elastic scatter-
ing were measured by both ATLAS and TOTEM Col-
laborations for center-of-mass energies of 7 [9, 10], 8
[11,12], and 13 TeV [13].

Another soft process is a diffractive bremsstrah-
lung. It is typically of electromagnetic nature. Howe-
ver, high-energy photons can be radiated in the elastic

1 A space in the rapidity devoid of particles.
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proton-proton scattering as postulated in [14]. This
idea was further extended in [15] by introducing the
proton form-factor into the calculations and by con-
sidering other mechanisms such as a virtual photon
re-scattering. The feasibility studies presented in [16]
suggest that such measurement should be possible
at the LHC. The requirements are high-5* optics,
proton measurement in ALFA/TOTEM and photon
measurement in Zero Degree Calorimeter.

Last of the processes described in this section is
the exclusive meson pair production, a 2 — 4 pro-
cess in which two colliding protons result in two
charged mesons and two scattered protons present in
the final state. In the non-resonant pion pair produc-
tion (also called continuum), a Pomeron is “emitted”
from each proton resulting in four particles present
in the final state: scattered protons and (central) pi-
ons [17]. The object exchanged in the t-channel is an
off-shell pion. Exclusive pions can also be produced
via resonances, e.g., fo [18]. Although the dominant
diagram of the exclusive pion pair continuum pro-
duction is a Pomeron-induced one, the production of
a photon-induced continuum is also possible. On the
top of that, a resonant p° photo-production process
may occur [19].

Recently, the models of elastic scattering, exclusive
meson production, and diffractive bremsstrahlung
were added to the GenEx Monte-Carlo generator
[20—-22].

3. Hard Diffraction

Hard diffractive events can be divided into the single
diffractive and double Pomeron exchange classes. In
the first case, one proton stays intact, whereas the
other one dissociates. In the second case, both inter-
acting protons “survive”. In addition, the sub-case of
the exclusive production can be considered — a pro-
cesses in which all final-state particles can be mea-
sured by ATLAS and CMS/TOTEM detectors.

Depending on the momentum lost during the in-
teraction, the emitting proton may remain intact and
be detected by a forward proton detector. However,
it may happen that the soft interactions between the
protons or the proton and the final-state particles can
destroy the diffractive signature. Such effect is called
the gap survival probability. For the LHC energies,
the gap survival is estimated to be of about 0.03-0.1
depending on the process [23].

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8

From all hard events, the diffractive jets have the
highest cross-section 2. By studying the single diffrac-
tive and double Pomeron exchange jet productions,
a Pomeron universality between ep and pp colliders
can be probed. As was discussed in [24], the tagging
of diffractive protons will allow the QCD evolution
of gluon and quark densities in the Pomeron to be
tested and compared to the ones extracted from the
HERA measurements. Another interesting measure-
ment is the estimation of the gap survival proba-
bility. A good experimental precision will allow for
comparison to theoretical predictions and differential
measurements of the dependence of the survival fac-
tor on, e.g., the mass of the central system.

An interesting class of jet events is one with a
rapidity gap is present between jets — the so-called
jet-gap-jet production. In such events, an object ex-
changed in the ¢t-channel is a color singlet and carries
a large momentum transfer. When the gap size is suf-
ficiently large, the perturbative QCD description of
jet-gap-jet events is usually performed in terms of the
Balitsky—Fadin—Kuraev-Lipatov (BFKL) model [27-
29]. The jet-gap-jet topology can be produced also in
the single diffractive and double Pomeron exchange
processes. Properties of such events were never mea-
sured — the determination of the cross-section should
enable the tests of the BFKL model [30].

Jets produced in the processes described above are
typically of gluonic nature. In order to study the
quark composition of a Pomeron, diffractive photon +
+ jet productions should be considered. In such cases,
one Pomeron emits a gluon, whereas the other one
delivers a quark. A measurement of the photon + jet
production in the DPE mode can be used to test the
Pomeron universality between HERA and LHC. Mo-
reover, HERA was not sensitive to the difference
between the quark components in a Pomeron. This
means that the fits assumed the equal amounts of
light quarks, © = d = s = & = d = 5. The LHC data
should allow more precise measurements [25].

Another interesting process is the diffractive pro-
duction of W and Z bosons. Similarly to ~ + jet, it
is sensitive to the quark component, since many of
the observed production modes can originate from a
quark fusion. As was discussed in [26], by measuring
the ratio of the W production cross-section to the
Z one, the d/u and s/u quark density values in the

2 Depends on the jet transverse momentum.
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Pomeron can be estimated. In addition, a study of the
DPE W asymmetry can be performed [26]. Such mea-
surement can be used to validate theoretical models.

The feasibility studies of all measurements de-
scribed above in this section are described in Ref. [31].

Diffractive jets can be produced in the exclusive
mode. Usually, it is assumed that one gluon is hard,
whereas the other one is soft [32,33]. The role of the
soft gluon is to provide the color screening in order to
keep the net color exchange between protons equal to
zero. The exclusivity of the event is assured via the
Sudakov form factor [34], which prohibits an addi-
tional radiation of gluons in higher orders of pertur-
bative QCD. In [35], a discussion about the feasibility
of such measurement in the case of the ATLAS detec-
tor and both tagged protons is held. A semiexclusive
measurement, when one of the protons is tagged, is
discussed in [36, 37].

4. Anomalous Couplings
and Beyond Standard Model Physics

The presence of an intact proton can be used to search
for a new phenomena. The Beyond Standard Model
(BSM) processes are usually expected to be on a high
mass, which makes them visible in forward detectors.

One example of the BSM physics is anomalous
couplings: YYWW, yvZZ, vyyy or WW+. As was
shown in [38, 39], the possibility of the forward pro-
ton tagging provides a much cleaner experimental
environment which improves the discovery poten-
tial. Authors expect that, with 30-300 fb=!, the data
collected with the ATLAS detector with information
about scattered protons tagged in AFP should result
in a gain in the sensitivity of about two orders of
magnitude over a standard ATLAS analysis.

Finally, the presence of protons with a high energy
loss and a lack of energy registered in the central de-
tector might be a sign of a new physics, for example,
magnetic monopoles [31].

5. Conclusions

The Large Hadron Collider gives possibility to study
the properties of diffractive physics in a new kine-
matic domain. Diffractive events can be identified
in all major LHC experiments using the rapidity
gap recognition method. In addition, as ATLAS and
CMS/TOTEM are equipped with the set of forward
detectors, it is possible to use the proton tagging
technique.
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In this paper, a brief summary of the diffractive
processes measurable at the LHC was done. Using
special settings of the LHC — high-8* optics — the
processes of elastic scattering, exclusive meson pair
production, and diffractive bremsstrahlung can be
studied. Hard diffractive events, due to smaller cross-
sections, should be measured with the standard LHC
optics. The studies of properties of the diffractive di-
jet, photon—+jets, and the W/Z boson production pro-
cesses should lead i.a. to the determination of a gap
survival probability and a Pomeron structure. Studies
of diffractive jet-gap-jet events should bring more in-
sight into the description of the Pomeron, i.a. to
verify predictions of the BFKL model. On the top of
that, the measurement of the jet production in the ex-
clusive (double proton tag) and semiexclusive (single
tag) modes can be performed. Finally, the additional
information about a scattered proton may improve
the searches for a New Physics including such phe-
nomena as anomalous gauge couplings or magnetic
monopoles.
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M. Twebinveki
JNOPAKIIIA HA LHC
Pezwowme

TlepepaxoBaHo i KOPOTKO OOGroBOpeHO audpakIliiiHi mporecu,
aki moxkna BumipoBatu Ha LHC. Cniucok Bkimouae M’ski (py-
JKHE PO3CIsIHHS, €KCKJIIO3MBHE IPOYyKYBAaHHS ME30HHHX Iap,
nudpakiiiine raabMiBHE BUIIPOMIHIOBAHHS) Ta YKOPCTKI (CTpy-
MeHI 3 0OMiHOM oOmHOrO abo JABOX MOMEPOHIB, (DOTOH + CTPY-
Mmiub, W/Z, cTpyMiHB-pO3pHB-CTPYMIHB, €KCKJIFO3UBHI CTpyMe-
Hi) IpouecH, a TaKOXK aABUINA 1o3a pamok Crangapraol Mozeni
(anoMasibHI KamibpyBaJsibHI 3B’s13KM, MArHiTHI MOHOIIOJI).
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TO THE 110th ANNIVERSARY
OF ACADEMICIAN M.M. BOGOLYUBOV BIRTHDAY

The 110th anniversary of Mykola Bogolyubov pro-
vides a good opportunity to recollect the scientific
achievements of this brilliant scientist and to discuss
once again his invaluable contribution to the develop-
ment of various fields of theoretical and mathematical
physics — nonlinear mechanics, nuclear physics, quan-
tum field theory, high-energy physics, condensed mat-
ter physics, etc. The departments, research groups,
and even whole institutes founded by him continue
to work nowadays. The Bogolyubov scientific school,
which has grown on his ideas, is successfully develop-
ing already in its fourth generation.

Mykola Bogolyubov was born on August 21, 1909
in Nizhny Novgorod. That very year the Bogolyubov
family moved from Nizhny Novgorod to Nizhyn,
Chernihiv province, where Mykola’s father — by that
time already known theologist Mykola Mykhailovych
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Bogolyubov — got the position of Professor of scrip-
ture at the Prince Bezborodko Historical and Philo-
logical Institute. It should be noted that this institute
had a long educational traditions and a high repu-
tation. Mykola Hohol, Yevhen Hrebinka, Leonid HIi-
bov, and many other outstanding figures had been
its students. Four years later, Mykola Mykhailovych
became a professor of theology at St. Vladimir’ Uni-
versity and the family moved to Kyiv.

In 1917, when Bogolyubov was eight, he entered the
preparatory class of the First Alexander Classic Kyiv
Gymnasium, but he studied there for less than two
years. In 1920, Soviet power was finally established
in Kyiv, the Department of Theology was closed, and
Mykola’s father was forced to take a parish in the
village of Velyka Krucha, Poltava province. Mykola
began to attend the Velykokruchans’ka seven-year
school and graduated in 1922. When recollecting this
school, Bogolyubov said that it’s pedagogical team
would be honor to the best schools of the capital. By
the way, the certificate on the graduation of the seven-
year school was the only document on education that
Bogolyubov received in his life, and the words about
his officially received education are “I became a scien-
tist in Velika Krycha”. Due to school and home educa-
tion, at the age of 13 Mykola Bogolyubov had knowl-
edge at the graduate level of the faculty of physics
and mathematics of the university.

In 1922, the Bogolyubov family returned to Kyiv.
Bogolyubov’s father asked the famous mathemati-
cian Academician Dmytro Grave for advise concern-
ing the further education of his elder son. Professor
Grave, after acquaintance with young Bogolyubov,
told his father that attending lectures at any univer-
sity would make no sense for the young man, but ad-
vised to continue education individually. Since then
Bogolyubov began to participate in the seminars of
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Academician Grave. In the spring of 1923 young Bo-
golyubov met his teacher, mentor, and future col-
league Academician Mykola Krylov, who began to
give special classes in mathematics and mechanics for
Bogolyubov. When Mykola Bogolyubov was 15 years
old, he published his first scientific paper, and on June
1, 1925, a special decree was adopted by the Ukrhlav-
nauka, which stated: “In view of phenomenal gift for
mathematics, to consider M. Bogolyubov as a post-
graduate student of the Department of Mathematics
since July 18, 1925. Add him to the payroll list”.

In 1930, Bogolyubov received his first recognition —
he got the Award of the Academy of Sciences of
Bologna (Italy). The same year, namely, on April
6, 1930, at the General Meeting of the Department
of Physics and Mathematics of the All-Ukrainian
Academy of Sciences (VUAN), on the recommenda-
tion of D. Grave and M. Krylov, the degree of Doctor
of Sciences was awarded to Bogolyubov without the-
sis. Academic title of Professor on the Department
of Theory of Functions was conferred on Bogolyubov
in 1936 after he had began teaching at Kyiv Univer-
sity. Later, in 1939, M. Bogolyubov was elected a cor-
responding member, in 1948 — Academician of the
Academy of Sciences of the Ukrainian SSR. In 1947,
he became a Corresponding Member of the Academy
of Sciences of the USSR, and in 1953 he became its
full member.

The topmost results of Bogolyubov in 1932-37 in-
clude the foundation, together with his teacher, of
a new section of mathematical physics — the theory
of nonlinear oscillations, that later would be called
nonlinear mechanics. In particular, they have devel-
oped new methods for integrating nonlinear differen-
tial equations describing vibration processes. These
results have been summarized in many joint mono-
graphs by Bogolyubov and Krylov of this period.
Among them are “On Some Formal Decompositions
at Nonlinear Mechanics”, “New Methods of Nonlin-
ear Mechanics”, “Application of Methods of Nonlin-
ear Mechanics to the Theory of Stationary Oscil-
lations”, “Introduction to Nonlinear Mechanics”. In
1955, a fundamental monograph by Bogolyubov and
Mitropolsky “Asymptotic Methods in the Theory of
Nonlinear Oscillations” was published.

In 1935-1936, Bogolyubov represents the Depart-
ment, of Mathematical Physics of VUAN abroad. He
gives lectures on the theory of nonlinear oscillations
at Henri Poincaré Institute in France, Belgian Math-
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Fig. 2. Opening of a new building of the Institute for Theo-
retical Physics

ematical Society, and Belgian Research Institute. In
1940, after the unification of the Northern Bukovyna
with Ukraine Bogolyubov participated in the forma-
tion of the mathematical department at the Physics
and Mathematics Faculty of Chernivtsi University.

In summer of 1941, M. Bogolyubov was evacuated
to Ufa and then sent to Moscow. At this time, as
Mykola Mykolayovych writes in his autobiography,
he, while continuing theoretical studies in nonlinear
mechanics, was mainly concerned with defense topics.
Bogolyubov returned to Kyiv in early 1944.

One of the most fruitful periods of creativity
of Bogolyubov is associated with Kyiv. Just here
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Fig. 3. Academicians O.S. Davydov, O.G. Sitenko, and
M.M. Bogolyubov after the opening of a new building of the
Institute (1970)

Fig. 4. M.M. Bogolyubov and his disciples, Academicians
0O.S. Parasyuk (left) and Yu.O. Mytropol’s’kyi (right)

Fig. 5. M.M. Bogolyubov with Academicians I.R. Yukhnov-
skyi and D.Ya. Petryna
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M. Bogolyubov initiated new fields of theoretical
and mathematical physics, in particular, wrote his
classical works on modern statistical theory. Parti-
cularly, in 1946, M. Bogolyubov published the world-
famous book “Problems of the Dynamic Theory in
Statistical Physics”. The results given in this work
have initiated a new stage in the progress of sta-
tistical mechanics after the achievements related to
Maxwell, Boltzmann, Gibbs. Bogolyubov proposed a
dynamic approach to the formulation of the kinetic
theory based on the chain of equations for equilib-
rium and nonequilibrium many-particle distribution
functions — the chain of Bogolyubov—Borne-Green—
Kirkwood—Yvon equations (it should be noted that
Bogolyubov gave the most general and mathemati-
cally rigorous chain derivation). Using a small-scale
expansion of this chain and applying the assumption
of the existence of a hierarchy of time scales (known in
the world literature as the hierarchy of Bogolyubov’s
characteristic times), Bogolyubov obtained closed ki-
netic equations for one-particle distribution functions
not only for neutral gas but also for plasma. The lat-
ter equation today is called the Bogolyubov—Balescu—
Lennard kinetic equation. Instead of Boltzmann’s hy-
pothesis of molecular chaos, he proposed the princi-
ple of complete weakening of initial correlations (Bo-
golyubov’s principle), which made it possible to calcu-
late collision integrals on the basis of a reduced chain
of equations for distribution functions. To describe
the next stage in the evolution of the system, Bo-
golyubov obtained the equations of hydrodynamics.
1947 — another brilliant result: the microscopic the-
ory of superfluidity. The article in which this theory
was formulated has remained, for many years, one of
the most cited works of our time. In this work, Bo-
golyubov for the first time applied a new mathemati-
cal technique known today as Bogolyubov’s canonical
transformation. On the example of a weakly idealized
Bose gas, Bogolyubov explained from the first prin-
ciples the formation of the excitation spectrum of a
superfluid helium and thus the nature of this macro-
scopic quantum phenomenon. He later summarized
his mathematical formalism for the foundation of a
microscopic theory of superconductivity. Bogolyubov
perfectly studied the methods of secondary quanti-
zation for quantum statistical systems. His “Lectures
on Quantum Statistics”, published in 1949, could be
a good illustration of effective application of this
method to quantum statistics. This contributed to

ISSN 2071-0186. Ukr. J. Phys. 2019. Vol. 64, No. 8



To the 110th Anniversary of Academician M.M. Bogolyubov Birthday

his interest in the problems of quantum field the-
ory, where he also managed to obtain a number of
outstanding results. A brilliant example is the devel-
opment of a method for eliminating divergences in
the quantum field theory based on the use of the
subtraction procedure, and proving one of the cen-
tral theorems of the renormalization theory, known
as the Bogolyubov—Parasyuk theorem. The discovery
of the general form of the subtraction procedure and
its justification were of great importance for the fur-
ther development of high-energy physics. It made it
possible, in particular, to prove the renormality of a
unified theory of electroweak interactions, as well as
of supersymmetric theories, to obtain operator expan-
sions at short distances, to study phase transitions,
and so on.

In 1951-1953, Mykola Bogolyubov worked at the
top-secret object of the Soviet Union — “Arzamas-16"
(Sarov), as well as at the Institute of Atomic En-
ergy (now “Kurchatov Institute” in Moscow), where,
in parallel with the mathematical studies of the prob-
lems related to the creation of hydrogen weapons, he
worked on the problems concerning the magnetic fu-
sion reactor. It should be noted that the results ob-
tained then by Bogolyubov in the field of nuclear fu-
sion have not been published, since they were a part
of secret reports. Only after removing the mark of se-
crecy from these results it turned out to be that a
considerable part of the results on the kinetic plasma
theory had been obtained by Bogolyubov before they
were obtained and published independently by other
authors in open literature.

From 1948, M. Bogolyubov along with his work in
Kyiv began to head the Department of Mathemati-
cal Physics at the Institute of Chemical Physics in
Moscow, and from 1949 — also the Department of
Theoretical Physics of the Steklov Mathematical In-
stitute of the Academy of Sciences of the USSR. In
1956, Mykola Bogolyubov became the Director of the
Laboratory of Theoretical Physics of the Joint Insti-
tute for Nuclear Research (JINR) in Dubna. In Jan-
uary 1965, at the session of the plenipotentiaries of
the governments of the member states of the Insti-
tute, Mykola Bogolyubov was elected the Director of
JINR, which he has headed for over 20 years. Since
1957, Mykola Bogolyubov also headed the Labora-
tory of the Theory of Atomic Nuclei and Elementary
Particles at the Institute of Physics of the Academy
of Sciences of the Ukrainian SSR.
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Among other results by Bogolyubov concerning the
perturbation methods in the quantum field theory,
one should also mention the method of renormaliza-
tion group — the new general approach in theoretical
physics, which has found application in various fields.

Mykola Bogolyubov is a founder of a new field
of research in the quantum theory that was later
called the axiomatic field theory. In particular, the
proposed derivation of the dispersion relations has
led to the development of a new mathematical ap-
proach to the analytic continuation of the gener-
alized functions of many variables. For these stud-
ies in 1966, Mykola Bogolyubov was awarded the
Danny Heinemann Award. In his welcome address,
Professor R. Jost said: “You made an unforgettable
impression on me. Most theorists at the time were
disrespectful of mathematics, and logical deduction
was “trampled”. Only the romantic influence of ge-
nius could have value. And then you appeared, a per-
son who knows both mathematics and physics and
who is ready to solve complex problems that require
their logical combination. It seems to me that this is
a reflection of the national character of your great
people”.

In 1961, M. Bogolyubov introduced the fundamen-
tal concept of quasiaverages and thus, in fact, a new
theory of phase transformations was created. The
spread of these ideas to the physics of elementary par-
ticles was called spontaneous symmetry breaking —
another fundamental result of Mykola Bogolyubov,
which is important for quantum physics.

During the period of 1964-1966, Bogolyubov pub-
lished important papers on the symmetry theory and
quark models of elementary particles. One of the im-
portant results in this field is the introduction of the
new quantum number for quarks, now known as color,
proposed by him and his disciples A.N. Tavkhelidze
and B.V. Struminskii for quarks. Now this parameter
is known as color.

Bogolyubov’s scientific activity revealed the unity
of the mathematical structure of theories for differ-
ent branches of physics. The follower of Bogolyubov
Academician V. Vladimirov noted: “Combination of
mathematics and physics in the works of M.M. Bogo-
lyubov made it possible for him to contribute consid-
erably to the development of theoretical physics and
in fact to create the foundations of modern math-
ematical physics, which continues the traditions of
Hilbert, Poincare, Einstein, Dirac”.
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Fig. 6. E.C.G. Sudarshan (USA), R.E. Marshak (USA),
M.M. Bogolyubov, and V.P. Shelest at the Institute for The-
oretical Physics during the XV International Conference on
High Energy Physics (Kyiv, 1970)

AP S
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Fig. 7. First International Conference on Plasma Theory
(Kyiv, Institute for Theoretical Physics of the Academy of Sci-
ences of the UkrSSR, 1971)

Mykola Bogolyubov had the talent of a great re-
searcher and outstanding organizer of science. An ex-
ample confirming his organizational skills is the foun-
dation in 1966 of the Institute for Theoretical Physics
that since 1993 is called by his name. It should be
noted that the creation of an elite physical institute in
Kyiv was an extremely difficult task. There were sev-
eral reasons. These include the existence in the USSR
of the Institute for Theoretical Physics of the USSR
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Academy of Sciences in Chornogolovka (now the Lan-
dau Institite for Theoretical Physics of RAS), and
the inconsistency to the “general line”, according to
which the priority in the development of fundamen-
tal research belonged obviously not to Ukraine, and
problems with the formation of highly skilled staff
capable to perform competitive research. It was nec-
essary to have the influence and weight of Mykola Bo-
golyubov to succeed. It was also important that the
First Secretary of the Communist Party of Ukraine
Petro Shelest and President of the Academy of Sci-
ences of Ukrainian SSR Borys Paton gave him great
help and assistance in this matter. As a result of their
joint efforts, on January 5, 1966, the Council of Min-
isters of the Ukrainian SSR adopted a decree “On the
Establishment of the Institute for Theoretical Physics
of the Academy of Sciences of the Ukrainian SSR”,
and in 1970, during the Rochester Conference, a new
building of the Institute was opened on the site cho-
sen by Bogolyubov.

Everything related to the foundation of the Insti-
tute has been done with the direct participation of
Bogolyubov — from the choice of the site for the in-
stitute building to staff appointments. He formulated
the main fields of scientific activity of the Institute,
namely: elementary particle theory, theory of nuclei
and nuclear reactions, and statistical physics. Myko-
la Bogolyubov invited outstanding scientists to the
Institute, including his talented students. Among the
scientists with world names whom he invited were
Academicians O. Davydov, A. Petrov, O. Sitenko,
I. Yukhnovsky; students of Bogolyubov: A. Tavhe-
lidze (later Academician of the Russian Academy of
Sciences), Academicians of the NAS of Ukraine O. Pa-
rasyuk, D. Petryna, Corresponding Member of the
Academy of Sciences of Ukraine V. Shelest and others.
As a result, for the first seven years of the director-
ship of Mykola Bogolyubov, the Institute has become
a powerful center of theoretical physics, well-known
not only in Ukraine, but also far beyond its borders.

Bogolyubov paied much attention to the devel-
opment of international cooperation, in particular
the organization of international conferences such as
Rochester Conference on high-energy physics and in-
ternational conferences on plasma theory initiated
by him together with O. Sitenko. These conferences
proved to be so successful that they were called the
“Kyiv Conferences on Plasma Theory” and were held
under this name in many countries around the world,
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periodically returning to Kyiv in 1976, 1987, and
2006.

As already mentioned, the scientific fields formu-
lated by Mykola Bogolyubov have determined the
activities of the Institute for many years. Today its
main activities are related to high-energy physics and
astrophysics, nucleus theory, quantum field theory,
symmetry theory, the theory of nonlinear phenom-
ena in condensed matter and plasmas, as well as the
kinetic theory of highly nonequilibrium processes. In
fact, this corresponds to somewhat extended trends
formulated by Bogolyubov. We can say that much
of the research activities of the Institute are related
to the application and development of the ideas of
Mykola Bogolyubov. In particular, in the field of the-
oretical high-energy physics, this concerns the dy-
namic generation of masses, spontaneous symmetry
breaking, quantum chromodynamics, and the appli-
cation of symmetry theory in quantum field the-
ory. The same concerns Bogolyubov’s ideas in the ki-
netic theory. As noted above, Mykola Bogolyubov is
one of the founders of the theory of many-particle
systems. Previously, such theory was used to describe
gases and plasma.

But Bogolyubov’s methods have also proved to be
efficient for describing much more complex systems,
in particular for the study of dusty plasmas, i.e., a
mixture of plasmas and solid particles. Creative in-
heritance of Bogolyubov is also used today to solve
the problems of condensed matter physics. These in-
clude the description of high-temperature supercon-
ductivity, the phenomenon of Bose condensation in
various systems, nonlinear phenomena in solids and
liquids, transport processes in molecular systems,
and the kinetics of electron transport in nanoob-
jects. Methods of quantum field theory are, in turn,
widely used in the study of low-dimensional and so-
called Dirac structures, as well as new materials.

Along with scientific research and organizational
activities, Bogolyubov carried out impressive peda-
gogical work. In 1936-1941 and 1944-1949, he taught
at Kyiv State University, in 1945-1948 he was Dean
of the Faculty of Mechanics and Mathematics, where
he founded and headed the Department of Mathe-
matical Physics. From November 1943, he was Pro-
fessor at the Lomonosov Moscow University. In Jan-
uary 1953, Bogolyubov was elected the Head of the
Department of Theoretical Physics of the Univer-
sity, where, in 1966, he also founded the well-known
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Bogolyubov Department of Quantum Statistics and
Field Theory.

It is important to note that Mykola Bogolyubov’s
life and work from the first years till the last days were
closely connected with Ukraine. Being ethnic Russian
by origin, he was brought up in the atmosphere of
deep love to Ukraine, he felt great respect for the
land where his childhood and adolescence passed,
where he made his first steps in science and gained
worldwide name. Desiring to share the fate of the
Ukrainian people in everything, he considered him-
self Ukrainian, as he wrote about himself in all ques-
tionnaires and personal papers. The same entry was
in his Soviet passport. Mykola Mykolayovych’s atti-
tude to Ukraine is comprehensively characterized by
Alexey Bogolyubov’s words about his elder brother:
“Mykola Mykolayovych had two homelands — Russia
and Ukraine and two native languages — Russian and
Ukrainian. Beginning from the Velyka Crucha years,
he became associated with Ukraine, and Shevchenko’s
poetry was, in fact, the first poetry he became in-
terested in. The young graduate student of the De-
partment of Mathematical Physics wrote the minutes
of the seminars of the department in Ukrainian, and
his first works were also written in Ukrainian.” Fur-
ther: “Mykola Mykolayovych, in the difficult times
for Ukraine, when the Ukrainian intelligentsia started
to be destroyed, when the shameful process of the
Ukrainian Liberation Union took place in Kharkiv
and Ukrainian books burned, he admitted himself to
be a Ukrainian and so considered himself for his whole
life. It is an indisputable fact that all the development
of his personality and the acquisition of features of
scientific creativity took place in Ukraine, and were
also closely associated with Ukraine. He used to call
Kyiv his favorite city, equating to him only Paris”. Al-
though these words are well known and have been
cited for many times in articles about the Ukrainian
period of Bogolyubov and memories of him, we have
to mention them here, because they reveal the ori-
gins of Bogolyubov’s love for Ukraine. Mykola Myko-
layovych’s attitude to his native Ukrainian land, to
the Ukrainian language, should be a good example
for many of our compatriots.

Mykola Bogolyubov passed away on February 13,
1992. He has left invaluable scientific heritage, numer-
ous scientific schools, a large cohort of students and
followers, with whom he always shared scientific ideas
and interesting research.
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Nikalai Nikolaevich Bogolyubov (1909-1992) was a Russian and
Ukrainian'Soviet mathematician and theoretical physicist kiiown for his
work in statistical field theory and dynamical systems. He was awarded
the Dirac Medal in 1992. The name was suggested by K. I. Churyumov.
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Fig. 8. Certificate on naming of a minor planet in the solar
system as Bogolyubov

M.M. Bogolyubov was a scholar of wide interna-
tional recognition. He was elected a member of 10
foreign academies of sciences and was awarded the
honorary doctorate of 10 foreign universities. Foreign
state and scientific awards also t estify t o t he recog-
nition of Bogolyubov’s contribution to the world sci-
ence. In particular, he is a winner of the Prize of the
Academy of Sciences of Bologna (1930, Italy), Heine-
mann Prize of the American Physical Society (1966),
Helmholtz Gold Metal (1969), Max Planck Prize of
the Physical Society of Germany (1978), Franklin
Prize (1974, USA), Prize of the Slovak Academy of
Sciences (1975), Paul Dirac Prize (1992), and others.

In 1987, the International Center for Theoretical
Physics in Trieste founded the Bogolyubov Prize for
outstanding achievements in mathematics and solid
state physics for scientists from developing coun-
tries. The National Academy of Sciences of Ukraine
has also established the Bogolyubov Prize for the
research in mathematics and physics. The Russian
Academy of Sciences founded in 1999 the Bogolyubov

Gold Medal, for researches in the fields of mathe-
matical physics and mathematics. The Bogolyubov
Gold Medal was also founded in JINR. In 2018, the
Bogolyubov Institute for Theoretical Physics started
awarding Bogolyubov Prizes for the best works in the-
oretical and mathematical physics.

The monuments of Academician Bogolyubov were
erected in Nizhny Novgorod and Dubna, and his
busts were located in Kyiv at the Bogolyubov Insti-
tute for Theoretical Physics and at the JINR Labora-
tory of Theoretical Physics. A memorial plaque hon-
oring Mykola Bogolyubov decorates the Red Building
of Taras Shevchenko National University of Kyiv. A
memorial sign in honor of Mykola Mykolayovych was
erected in the village of Velyka Krucha.

The 100th anniversary of Bogolyubov birth is
widely celebrated in Ukraine. The International Bo-
golyubov Conference “Modern Problems of Theoreti-
cal and Mathematical Physics” and the II Ukrainian
Mathematical Congress were held in Kyiv, and the
anniversary Bogolyubov Conference was also held in
Lviv; books and articles about the life and work of the
great scientist were published. The anniversary coin
and the Bogolyubov Medal of the Ukrainian Mathe-
matical Congress were minted.

On December 3, 2009, at the application of the
famous Ukrainian astronomer K.I. Churyumov ini-
tiated by the Bogolyubov Institute for Theoreti-
cal Physics, the International Astronomical Union
adopted the decision to give the minor planet of
the Solar System (22616) = 1998 KG7 the name Bo-
golyubov.

A brilliant scientist continues his life in the works of
his students and numerous followers, including those
who work at the Bogolyubov Institute for Theoretical
Physics, and we are sure that the ideas of Mykola Bo-
golyubov will inspire many theorists for many years.

V.G. BAR’YAKHTAR, A.G. ZAGORODNY,
V.M. LOKTEV, I.M. MRYGLOD,

M.F. SHUL’GA, 1.R. YUKHNOVS’KYI
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