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Symmetry is a wide-reaching concept
that has been used in variety ways in
physics. Originally it was used mainly
to describe the arrangement of atoms
in molecules and crystals (geometric

symmetries.)

In the course of 20th century and
beyond, it is considerably extended
and covers some of the most
fundamental ideas in physics.



1. Kinematic (space-time) symmetries.Examples are rotational
Invariance in non-relativistic quantum mechanics

H=7-4+V(r)

. ., 0
H(F) = ih=(7)
leading to SO(3) symmetry, and Lorentz invariance in relativistic
guantum mechanics

7, (10, — eA,) + m](7F,t) = 0

which leads to SO(3,1) symmetry.



2. Dynamic (internal) supersymmetries.
Here we see development of two ideas:

a. there may exist in nature other
symmetries in addition to space-time.

b. There may be symmetries of dynamical
origin, related to special properties of the
Hamiltonian (or Lagrangean) operator,
rather than its space-time behavior.



Supersymmetry:

In normal symmetry, symmetry operations
transform separately fermions into fermions, bosons
into bosons.

In supersymmetry, some of the symmetry
operations transform bosons into fermions and vice
versa. Introduction of SUSY led to other major
developments in physics. SUSY is used in variety of
ways. Particularly important are:

1. Kinematic (space-time) supersymmetries:
For example Wess-Zumino invariance. No
experimental evidence for it yet.

2 Dynamic (internal) supersymmetries.



Atomic Physics

'

Pauli (1926) SO(4)

'

Heisenberg (1932) SUr(2)

v

Wigner (1937) SUrs(4) D SUr(2) ® SUg(2)

/\

Particle Physics Nuclear thrsics
l Elliot (1958) SU(3)
Gell-Mann and Ne’eman (1962) SU(3)

Giirsey and Radicati (1964) SUsr(6) D SU(3) ® SU2)

\J
Arima and Tachello (1974) SU(6)



A Brief History of Dynamic SUSY in Physics

Miyazawa (1966) SU(6/21)

Particle Physics Nuclear Physics

'

Balantekin, Bars & Tachello (1978) SU(6/12)

\/
Catto & Gilirsey (1984) SU(6/21)



Is color related to octonions?

Is the quark structure a consequence of octonionic quantum mechanics?
Some consequences:

Since (G5 is the automorphism group of octonions

Go = Aut(Q2)

and it can be imbedded into SO(7)

SO(7) D G2 D SU(3)

is SO(7) a higher symmetry of strong interactions?



Hadronic Supersymmetries
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Hadronic Supersymmetries

antiquark
(spin 72
color 3 )
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Hadronic Supersymmetries

Diquark
(spin 0 or 1
color 3 )
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antiquark
(spin Y2

color 3 ) ‘ \

Diquark
(spin 0 or 1
color 3 )

quark
(spin 72
color 3
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Octonions: 1,e4 A=1,....7 eaep = —0aB + €aBcec
eapc = 1forABC' = 123,516,624,435,471,673,572

s

Z

N e .
5 e3 4
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€1 €2 = €3

le1, e2]

z,y, 2] = (2y)z — 2(y2)

Hadronic Supersymmetries

Glrsey diagram
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€1 €2 = €3
€2 €1 =

le1,e2] =

[, y, 2] = (2y)z — 2(y2)
leq, eq,e5] = (eqeg)es — eqeges) = 2er
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Completion of Gursey diagram
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2y, 2] =y, 2z,2] = |2, 2, 9]

[CB,y,Z] — —[y,a:,z] — —[QZ,Z,y] — —[z,y,x]

Define a 4-index object ¢, related to the associator as
€a; €3, eu] = 29aguvey

Yopuw = 1 for combinations 1346, 2635, 4567, 3751, 6172, 5214, 7423

Hadronic Supersymmetries
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Duality property between €5, and ¥ng,, In R’
is best seen in the following construction:

‘
Oy W = o — Ot

Tt O W o H~ — =

N T = Wi

2 4 3 6

4 3 6 5 ) =¢€xr
6 5 7 1

3 6 5 7))

5 7 1 2

7 1 9 4 (= YeBur
1 2 4 3
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SPLIT OCTONION ALGEBRA

One can form a split Cayley algebra over the field of complex numbers with
basis:

1 , . 1 .
= 5(61 + iey) uy = 5(61 — 1€y4)
1 | . 1 .
Ug = 5(62 + ies) Uy = 5(62 —ies)
1 , . 1 .
U3z = 5(63 + ieg) Uz = 5(63 — ieg)
1 , ., 1 ,
Uy = 5(1 + ie7) Uy = 5(1 — jer)
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The automorphism group of the octonion algebra is the 14-parameter excep-
tional group (G». The imaginary octonion units e,,a = 1,2,...,7 fall into its
7-dim representation.

Under the SU(3)¢ subgroup of the G that leaves e; invariant, up and uj
transform like singlets while u; and u; transform like a triplet and an antitriplet
respectively. The multiplication table can now be written in a manifestly SU(3)¢
invariant manner:

us = U uoty = 0
. — . * —_— . * , — . _—
Upl; = UjUy = Uy Ugl; = ujug = 0
*
’UJZ'”U,j — —uju,,; — eijkuk
X
’U,f,;’UJj = —(57;]'11,0
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To compactify our notation we write:

1 , . 1 .
up = =(1 + ie7) uy = =(1 — iey)
2 2
1 , L 1 .
Uj = 5(63' +ieji3) Uj = 5(63' —1€j13)

Hadronic Supersymmetries
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MultiplicationT able :

E S E S
Uo | Uy UL (s
Uo Uo 0 U 0
* * *
ug | 0 | ug 0 Uy,
* .
U4 0 U4 €ikilU; —O04kUO
* * *
us | u; O | —0jkuU, | €jkily

Note: u; and u; behave like fermionic creation and annihilation operators:

{u’ivuj} — {u;kau;(} =0 {uzvu;} — _5’ij

Showing the three split units to be Grassmann numbers.
Being non-associative they give rise to an exceptional Grassmann algebra.
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DYNAMICAL SUPERSYMMETRY

Under the color group SU(3)¢
49 3®3=168

99: 33=3D6

Under the spin-flavor group SU,¢(6)

9q9: 6R6=1¢35
qgqq: 66 =15 21
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DYNAMICAL SUPERSYMMETRY

Under the color group SU(3)¢
9 3x3=168 uju,’::—jkuo

9: 3R3=3%6 ujuk:ejkiuf’;

Under the spin-flavor group SU,¢(6)

9q9: 6R6=1¢35
gq: 66 =15 21
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If one re-writes qqq baryon as qD, where D is a diquark,
the quantum numbers of D are:

for color, 3, since when combined with ¢ must give a

color singlet;

for spin-flavor, 21, since when combined with color must give
antisymmetric wavefunctions.

But the quantum numbers of ¢ are:

for color, 3,
and for spin-flavor, 6.

Thus g and D have the same color quantum numbers
(color forces can not distinguish between ¢ and D).
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» Dimensions of Internal Degrees of Freedom of Quarks &
Diquarks

SUf(3) SUS(Z) dim
q O s=1/2 | 3x2=6
== s = 6 x 3 =18
D1 S O s =20 IX1=3
| L]
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Thus there is an approximate dynamic supersymmetry
in hadrons with supersymmetric partners

All hadrons can be obtained by combining 1) and -
mesons are ¢q, baryons are gD, )
antibaryons are g, and exotic mesons are DD.

Corresponding supersymmetry is SU(6/21).
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The confining energy associated with the Bohr radius for
the bound state is obtained from the linear confining
potential S(r) = br, so that the effective masses of the
constituents become:

1 1
My =m1+§So Moy =m2+550 (So = bro)

For a meson mi and msy are the current quark masses while
My and M5 can be interpreted as the constituent quark masses.
Note that even in the case of vanishing quark masses

associated with a perfect chiral symmetry, confinement results

in non-zero constituent masses that spontaneously break the
SU(2) x SU(2) symmetry of u, d quarks.
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Simplified spin free Hamiltonian involving
only the scalar potential:

H? = 4](m + 1bfr)2 + P? + dCs 1)]
2 r2
9?2 290
p2=—___ =
" or2 r Or

Potential model gives :

9
g

2 2\ __ 2 2
p_mw)_mA_mN

with an accuracy of 1% of the experiment.

Hadronic Supersymmetries

34



Hadronic Supersymmetries

35



(e — DI +nr — )20 +n)!(€+ 20 + 1)
—I_niz:o 22n(n!)2(n, —n — I +n+ 1)
L (—)RHelH S (LD (e —n— D(n+ k4 — D)(n+ k+ 1)

S 2 +p—d) al!(3)! :
_m{ 2 iy <<\a\ —p)!(p— ol + l)!)

2

prtrts (k+ ) (e

— k-l +Ek+ 1) (n+k—|a|+ 3)!
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1
E? = 4b({ 4 2n, — )

1
Eg = 4b(£ + 2ne + 5)

Ng 2 Ny
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RESULTS

* Parallelism of Regge Trajectories
* Mass formulas m — p, N — A trajectories

* Existence of exotic mesons as DD states: ag(980), fo(980)
* Multiquark states by ¢ — D, ¢ — D transform
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Hadronic Supersymmetries

Desargues’ Theorem
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Pappus’ Theorem
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Exceptional Groups : G2, F4, Eg, E7, Eg

Construction of the root lattices of Eg, Eg = Eg, or Eqg

-Conway-Slone lattice associated with discrete Jordan algebras
over octonions

-Association between superstring symmetries and lattices generated
by discrete Jordan algebras

-Suggest all known superstring theories are related and

originated from a more general theory related to
Conway-Slone transhyperbolic group

Hadronic Supersymmetries 45



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

