

EXPERIMENT

One fundamental question is open:

« A Second Galaxy Missing Dark Matter in the NGC 1052 Group » <u>Astrophysical Journal Letters, March 2019</u>

i.e. two galaxies are well described by General Relativity and are a good sign that Modified gravity is a weak solution unless these are specific cases also explainable in MOND

How homogeneous is DM density in the universe?

Does DM exist ? (or is GR wrong ?)

A SECOND GALAXY MISSING DARK MATTER

Indirect detection

Collider production

Direct detection

Complementary approaches of the DM search

Search for DM @ LHC:

- Mono-X+DM (MET)
- Long Lived Particles
- Higgs boson invisible decay (Not covered in this talk, see backup slide)

CMS

LHC and its experimental setup to tackle DM

LHC – a high intensity proton-proton collider
2 main general purpose experiments : ATLAS and CMS
2 specialized experiments : LHCb, Alice

the energy frontier allow to produce massive DM candidates

LHCb and the DM

- pp collisions at 7, 8 and 13 TeV
- 3 (2) /fb in Run I (II) of the LHC
- Produce b b pairs produced correlated in the forward region

- LHCb is a multi-purpose detector in the forward region
- Allows the measurement of $p He \rightarrow antiproton$ to help constraining backgrounds for astroparticle searches :

LHCb can be turned into a fixed-target experiment using the injection of a noble gaz jet colliding with one LHC proton beam.

First measurement using 0.5 nb⁻¹ dataset of p-He

Importance of MET as DM signature at the LHC :

Assume that DM is composed of a neutral, weakly interacting particle \rightarrow Missing Transverse Energy (MET)

Experimental challenge :

Huge effort to built pile-up resilient MET reconstruction in all LHC experiments Even better : MET significance (MET/Sigma)

ATLAS-CONF-2018-039

When no DM signal seen, how do we interpret null results ?

- Interpret these null results as limits → limit plots exploring the space parameters of simplified models or more complex models (Z'_B, 2HDM+a, SUSY).
- Some of these results are recast on **Model dependent** limits on the nucleon-DM cross-section for comparison with direct searches (each plot has the values of the model parameters chosen to cast the results !).

Mono X channels

- Mono Jet

- Mono photon J
- Mono Top
- Mono Z/W
- Mono Higgs

- Use the MET distribution to see any potential excess
- Use the MET distribution and kinematics of the final state decay products to enhance the observation of a potential excess.

NB : Mono-Higgs is very sensitive to new physics since there is no ISR contributions thanks to very low coupling between H and quarks

(Adapted from M. Felcini)

λ

Evolution of exclusion with couplings

Mono-X provides complementary information to dilepton/dijet resonance searches when coupling to fermions is low

DM as SUSY LSP

Contraints on the Lightest Supersymmetric Particle mass

⁽ATL-PHYS-PUB-2019-012)

CMS combined summary plots

DM as Long Lived Particles from SUSY and beyond

Sources of Long Lived Neutral particles

Standard Model:

B, D and K mesons Neutrons Neutrinos

<u>SUSY:</u>

R-Parity SUSY LSP R-parity violating SUSY Gauge Mediated SUSY breaking scenarii Anomaly mediated SUSY breaking scenarii Split SUSY Stealth SUSY

•••

Beyond SUSY:

...

Hidden valley scenarii Dark QED Dark QCD Many DM models Left-Right symmetric models (esp. Heavy neutrinos) Axion-like particles

LLP at LHC : rich phenomenology with a lot of experimental challenges (Custom Trigger, Reco, Backgrounds/DQ)

CMS: Delayed jets

Full Run 2 = 137 fb⁻¹

Summary of Long Lived Particles

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary

cτ [m]

 τ [ns]

DM from other specific final states

- Angular distribution of dijets (CMS & ATLAS)
- Search for delayed $\mu^{-}\mu^{+}$ resonance (LHCb)
- Dark photons (ATLAS, CMS, LHCb)
- ...

Dark photons (LHCb)

Good vertex reconstruction allows to search for prompt decay or displaced vertex when A' decays.

- Can search for Dark Photons (A') in μμ
 - First result with 1.6 fb⁻¹ at 13 TeV
 - New $\mu\mu$ trigger with online μ -ID
 - ✓ Only interesting part of the event to disk
 - \checkmark No prescale down to threhold 2 m_µ
- Put constraint on the kinetic mixing with off-shell photon (ε²)

PHYSICAL REVIEW LETTERS 120, 061801 (2018)

LHCb $B^{(0,+)} \longrightarrow K^{(*0,+)} X(\mu,\mu)$

PHYSICAL REVIEW D 95, 071101(R) (2017)

3 fb⁻¹ of data at 7 and 8 TeV

Conclusion

- New experimental arguments strengthen the need for DM
- A huge activity at LHC to search for DM in very different ways beyond the WIMP paradigm, especially LLP
- Up to now, no DM candidate observed
- Extended dataset is coming at the LHC
- Stay tuned !

Back-Up Slides

Mono-Top

JHEP 03 (2019) 141 (CMS)

w

وى _ي

W

 $\phi(a) \chi$

g Robo

9000 g

Bibliography

ATLAS

Short Titles	Journal reference	Date	√s (TeV)	L (fb ⁻¹⁾
Summary of searches for mediator-based dark matter and scalar dark energy models	Submitted to JHEP	03-mars-19	13	36
Search for MET plus a single top quark	Submitted to JHEP	23-dec-18	13	36
Displaced jets in muon system	Phys. Rev. D 99 (2019) 052005	18-nov-18	13	36
Search for events with MET and VBF signature	DOI: 10.1016/j.physletb.2019.04.024	18-sept-18	13	36
Same-sign dilepton plus b-jet search	JHEP 12 (2018) 039	31-juil-18	13	36.1
Search in the MET plus V hadronic final state	JHEP 10 (2018) 180	30-juil-18	13	36
H to ZdarkZdark or ZZdark search in the IIII final state	JHEP 06 (2018) 166	09-feb-18	13	36
Stop pair, WIMP DM pair; 1 lepton	JHEP 06 (2018) 108	30-nov-17	13	36
MET plus jet search	JHEP 01 (2018) 126	09-nov-17	13	36
WIMP DM pair + HF quarks; 0, 2 leptons	Eur. Phys. J. C 78 (2018) 18	31-oct-17	13	36
Search ZH(125), H(125)->invisible and Z+MET	PLB 776 (2017) 318	31-aug-17	13	36
MET + H search with H to bb	Phys. Rev. Lett. 119 (2017) 181804	05-juil-17	13	36.1
Search H(125)->gamgam + Missing-ET	Phys. Rev. D 96 (2017) 112004	13-juin-17	13	36.2
MET plus photon search	Eur. Phys. J. C 77 (2017) 393	12-apr-17	13	36.3
MET + H search with H to bb	ATLAS-CONF-2018-039	25-juil-18	13	80

LHCb

Titles	Journal reference	Date	√s (TeV)	L (fb ⁻¹)
Search for dark photons produced in 13 TeV pp collisions	10.1103/PhysRevLett.120.061801	08-Oct-17	13	1.6
Updated search for long-lived particles decaying to jet pairs	<u>Eur. Phys. J. C77 (2017) 812</u>	20-May-17	13	2
Search for massive long-lived particles decaying semileptonically in the LHCb detector	<u>Eur. Phys. J. C77 (2017) 224</u>	3-Dec-16	7-8	1-2
Search for Higgs-like bosons decaying into long-lived exotic particles	<u>Eur. Phys. J. C76 (2016) 664</u>	11-Sep-16	7	0.62
Search for long-lived scalar particles in B+ $ ightarrow$ K+ $\chi(\mu+\mu-)$ decays	<u>Phys. Rev. D 95, 071101(R)</u>	14-Apr-17	7-8	3

Bibliography

CMS

Titles	Journal reference	Date	√s (TeV)	L (fb ⁻¹)
Search for long-lived particles using delayed jets and missing transverse momentum with proton-proton collisions at \sqrt{s} = 13 TeV	CMS-PAS-EXO-19-001	31-Mar-19	13	137
Search for dark matter particles produced in association with the Higgs boson in proton-proton collisions at s $\!$ for dark matter particles produced in association with the Higgs boson in proton-proton collisions at s $\!$	CMS-PAS-EXO-18-011	31-Mar-19	13	35.9
Search for dark matter produced in association with a single top quark or a top quark pair in proton-proton collisions at \sqrt{s} = 13 TeV	JHEP 03 (2019) 141	6-Jan-19	13	35.9
Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV	<u>EXO-17-015</u>	26-Nov-18	13	77.4
Search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks in proton-proton collisions at √s = 13 TeV	<u>Eur. Phys. J. C 79 (2019) 280</u>	16-Nov-18	13	35.9
Search for new particles decaying to a jet and an emerging jet	JHEP 02 (2019) 179	23-Oct-18	13	16.1
Search for dark matter particles produced in association with a top quark pair at $\forall s$ = 13 TeV	Phys. Rev. Lett. 122 (2019) 011803	18-Jul-18	13	35.9
Search for dark matter produced in association with a Higgs boson decaying to $\gamma\gamma$ or $\tau+\tau-$ at \sqrt{s} = 13 TeV	JHEP 09 (2018) 046	13-Jun-18	13	35.9
Search for new physics in dijet angular distributions using proton-proton collisions at s $\!$ 13 TeV and constraints on dark matter and other models	<u>Eur. Phys. J. C 78 (2018) 789</u>	21-Mar-18	13	35.9
Search for dark matter in events with energetic, hadronically decaying top quarks and missing transverse momentum at ${\checkmark}\text{s}\text{=}$ 13 TeV	JHEP 06 (2018) 027	25-Jan-18	13	36
Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at \sqrt{s} = 13 TeV	Phys. Rev. D 97 (2018) 092005	6-Dec-17	13	35.9
Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at s \surd = 13 TeV	Eur. Phys. J. C 78 (2018) 291	31-Oct-17	13	35.9
Search for new physics in the monophoton final state in proton-proton collisions at \sqrt{s} = 13 TeV	J. High Energy Phys. 10 (2017) 073	12-Jun-17	13	12.9

Mono-V (Z or W)

Phys. Rev. D 97 (2018) 092005

(includes also monojet)

Summary LLP@ CMS

CMS long-lived particle searches, lifetime exclusions at 95% CL

H → XX (10%), X → ee, m(H) = 125 GeV, m(X) = 20 GeV 8 TeV, 19.6 fb⁻¹ (displaced leptons) $H \rightarrow XX$ (10%), $X \rightarrow \mu\mu$, m(H) = 125 GeV, m(X) = 20 GeV 8 TeV, 20.5 fb⁻¹ (displaced leptons) GMSB SPS8, $\tilde{\chi}_{i}^{0} \rightarrow \tilde{G} \gamma$, m $(\tilde{\chi}_{i}^{0}) = 250 \text{ GeV}$ 8 TeV, 19.7 fb⁻¹ (disp. photon conv.) GMSB SPS8, $\widetilde{\chi}_1^0 \rightarrow \widetilde{G} \gamma$, m($\widetilde{\chi}_2^0$) = 250 GeV 8 TeV, 19.1 fb⁻¹ (disp. photon timing) RPV SUSY, m(\tilde{q}) = 1000 GeV, m($\tilde{\chi}_{.}^{0}$) = 150 GeV 8 TeV, 18.5 fb⁻¹ (displaced dijets) RPV SUSY, $m(\tilde{q}) = 1000 \text{ GeV}, m(\tilde{\chi}_{*}^{0}) = 500 \text{ GeV}$ 8 TeV, 18.5 fb⁻¹ (displaced dijets) AMSB $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{1}^{\pm} \rightarrow \widetilde{\chi}_{1}^{0} + \pi^{\pm}, m(\widetilde{\chi}_{1}^{\pm}) = 200 \text{ GeV}$ 8 TeV, 19.5 fb⁻¹ (disappearing tracks) cloud model R-hadron, m(g) = 1000 GeV 8 TeV, 18.6 fb⁻¹ (stopped particle) AMSB $\tilde{\chi}_{1}^{\pm}$, tan(β) = 5, μ > 0, m($\tilde{\chi}_{2}^{\pm}$) = 800 GeV 8 TeV, 18.8 fb⁻¹ (tracker + TOF) AMSB $\tilde{\chi}_{\star}^{*}$, tan(β) = 5, μ > 0, m($\tilde{\chi}_{\star}^{*}$) = 200 GeV 8 TeV, 18.8 fb⁻¹ (tracker + TOF)

DM from invisible Higgs decay

The Higgs portal to Dark sector

LHC can explore the idea that connection between SM and a dark sector arises through Higgs sector.

Figure 1: Exotic Higgs boson decays to four leptons induced by intermediate dark vector bosons via (left) the hypercharge portal and (right) the Higgs portal, where *S* is a dark Higgs boson [14]. The Z_d gauge boson decays to SM particles through kinetic mixing with the hypercharge field or through mass mixing with the *Z* boson. The HZZ_d vertex factor is proportional to ϵ whereas the HZ_dZ_d vertex factor is proportional to κ .

Figure 10: Upper limit at 95% CL on the branching ratios for processes (a) $H \rightarrow Z_d Z_d$ and (b) $H \rightarrow aa$, for the two benchmark models studied in this paper. The limit on $H \rightarrow aa$ is greater than 1 for $m_a > 15$ GeV. The step change in (a) at the $m_X = 15$ GeV boundary is due to the addition of sensitivity to 4e and $2e2\mu$ final states (lowering the limit). The shaded areas are the quarkonia veto regions.

ATLAS JHEP 06 (2018) 166

(see also CMS Eur. Phys. J. C (2018) 78: 29)