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We investigate the conditions under which a scalar field can become coupled, and show that, at
the background level, such coupled scalar field behaves as a two component perfect fluid: a
network of frustrated cosmic strings with EoS parameter w=—-1/3 and a
cosmological constant.

The potential of this scalar field is very flat at the present time. Hence, the coupled scalar
field can provide the late cosmic acceleration.

The fluctuations of the energy density and pressure of this field are concentrated around the

galaxies screening their gravitational potentials.
Therefore, such scalar fields can be regarded as coupled to the inhomogeneities.
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The great challenge for modern cosmology
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Concordance cosmology
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Concordance cosmology

The nature of the cosmological constant is, however, still
unclear.

There are, in fact, about 120 orders of magnitude
between its observed value and the theoretically
expected one, which is related to the vacuum energy
density.

The cancellation mechanism between the various energy
densities that would reduce this large theoretical value of
the cosmological constant is still a mystery.

In addition, the ACDM model (as well as a lot of other
dark energy models) faces the coincidence problem, that
is the question, why is the cosmological constant at
present of the same order of magnitude as the energy
density of dark matter?

Alternative models using scalar
fields to explain the DE:

- quintessence (-1 < w <0)
- phantom (w < -1)
- quintom (w = -1 crossing)

(1) =
const?
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Background equations

_ A _ ds* = a* (dn’ - 3,,dx"dx” )
Friedman-Lemaitre-Robertson-Walker background metric: e R "

scale factor d (77) conformal time comoving spatial coordinate

physical distance: R=ar
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Background equations
. ) _ ds* =a’ (d772 —§aﬂdx“dxﬂ)
Friedman-Lemaitre-Robertson-Walker background metric: e R "

comoving spatial coordinate

The Universe is filled with a scalar field minimally coupled — scalefactor a(17)  conformal time
to gravity. Its action and energy-momentum tensor: physical distance: R = ar

Sy = / d*zy/—g (%g“”amauqb = V(¢)), Ti(¢) = 9" 0,90\p — 0L (%9”’ X V((/)))
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Background equations
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The Universe is filled with a scalar field minimally coupled OB ERANRLCOoRINStE
to gravity. Its action and energy-momentum tensor:

So= [ dtov=g ( 50"9,00,6 - v<¢>), T1(6) = 90006 — 3t ( 50°0300,6 ~ V(0))
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scale factor a(?]) conformal time
physical distance: R = ar

The equation of motion reads:

3"
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The equation of motion reads:

3"

For the background energy density and pressure we get:

where the prime denotes the derivative with respect to conformal time n.
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For the background energy density and pressure we get:

where the prime denotes the derivative with respect to conformal time n.
The background equation of motion is: ¢! + 2H¢. + a _(¢c) =

The Friedmann and Raychaudhuri equations for our cosmological model:

1 1 1 1
HE = 50°K [+ Ersa + 0%/ + V(8| K = 30° |~Euna — 5Eaum — (#)7/a* + V(82)
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Scalar perturbations and Einstein equations

The metrics: ds® = a®(n) [(1+ 29) dn? — (1 —2w) '7a3da:°‘dxﬂ]
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Scalar perturbations and Einstein equations

The metrics: ds® = a®(n) [(1+ 29) dn? — (1 —2w) 'yagdxadxﬂ]
The perturbations of the scalar field energy-momentum tensor:
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Scalar perturbations and Einstein equations
The metrics: ds® = a®(n) [(1+ 29) dn? — (1 —2w) 'yagdxadxﬂ]

The perturbations of the scalar fleld energy momentum tensor:
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1
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Where we split the sc.f. into the background part ¢.(n) and its fluctuation part @(n,r): ¢ = ¢c + ¢
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Scalar perturbations and Einstein equations
The metrics: ds® = a®(n) [(1+ 29) dn? — (1 —2w) 'yagdxadxﬂ]

The perturbations of the scalar field energy-momentum tensor:
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1
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_ 1 . b op g @V

Where we split the sc.f. into the background part ¢.(n) and its fluctuation part @(n,r): ¢ = ¢c + ¢

For the considered model, Einstein equations are reduced (after linearising the system of 3 equations) to:
AP — 3H(P + HP) + 3KD = ~ a2 (Sequss + erad) 9 o
% [@"+3H¢’+¢(2; —Hz—lc)]

a2

_k N2 A Zﬂ
2 (¢c) 45 ¢cg0 a d(b (¢C)§0 I 1 20 1 . dV
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Spatial distributions of 0€.5q is defined by ®

After substitution of the second Einstein equation, usage of some well-known relations and help of the
background Friedmann and Raychaudhuri equations and the equation of motion, the third Einstein equation
takes the form:

2 o | a?
b _§a2"35rad = §azﬁsdust — Kl'gaprad
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After substitution of the second Einstein equation, usage of some well-known relations and help of the
background Friedmann and Raychaudhuri equations and the equation of motion, the third Einstein equation
takes the form:

2 1 2

> - a
P | — -0 KErad — 0 KEqust | = K—0Prad
3 2 2

Because, £,,4 ~ 1/a* and &4, ~ 1/a® , we can drop the first term in the brackets in the left-hand-side of this

equation and obtain:
1

: pc?
6pra,d ™ —gpadust — —gpF = gderad
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Because, £,,4 ~ 1/a* and &4, ~ 1/a® , we can drop the first term in the brackets in the left-hand-side of this
equation and obtain:

= 2

pc 1
'—¢—3 —_— gderad

Since the definition for 55rad, taking into account the resulted second and third Einstein equations, some
algebra and after substitution @ = Q/a , Where (Qis a function of @and the spatial coordinates, the first
Einstein equation reads:

AR Kk dpc? 2 Ky s
S T e R gl &

a a

6pra,d ™ —gpédust —

ds?
da

dV 20

¢II
¢/
Then, we are looking for the solutions of this equation which have a Newtonian limit near gravitating
masses.

[3%2 +H —
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The coupled scalar field can provide the late cosmic acceleration

In the flat K=0 topology, if the dust-like matter is described by the discrete distributed gravitating sources
(galaxies) with masses MmM; and the rest-mass density p = Zmia(r —r;), the grav. potential is:

GN m;
er—r| 2 ;m-

It also demonstrates that @ ~ 1/a. After ¢, = B =const, we get that ¢ = B+, < = const

dVv a %4
2 = 22— 2—-:
Then the eq. of motion: 9% B+a d¢(¢c)—2aﬂ+a 5 0,
,32
=¥ V-——+Voo, Vs = const
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__3p 15
For the background energy density and pressure: €p = 5 o s Vos Do = BB — Vo

We derived a specific form for the time dependence of the background scalar field and for its potential so
that the scalar field is consistent with such a coupling to the inhomogeneities.

The fluctuations of the scalar field are absent but the fluctuations of the energy density and pressure are
non-zero. These fluctuations are concentrated around galaxies, in full agreement with the coupling
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Conclusions

- Considered scalar field behaves as a two component perfect fluid.

- Its potential should be very at at the present time.

- The fluctuations of this field are absent but the fluctuations of the energy density and
pressure are non-zero. These fluctuations are concentrated around galaxies, in full
agreement with the coupling condition.

The coupled scalar fields may exist under the conditions mentioned above and can provide the
late cosmic acceleration.
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Inhomogeneous Universe scales 1 - 20 MDC

NASA's Great Observatories

V/ncent VanGog

el s




Scales 50-200 Mpc: filaments and voids
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Supercomputer sirrLuIat,ion’ '

Newtonian potential q>~yR is used to simulate the structure formation.

Up to which scales can we use the Newtonian potential?



Cosmological Principle (CP)

Physical background for the CP:

CP is the notion that the spatial distribution of matter in the
Universe is homogeneous and isotropic when viewed on large
enough scales

However, recent observations (XXI Century):

There are cosmic structures with [ >>300Mpc.
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The largest cosmic structures

1. Sloan Great -_Wé.ll e

[ =423 Mpc

Giant filament
consisting of a number
of superclusters
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Large Quasar Groups

2. Clowes-Campusano LQG:
34 quasars (red crosses)

[ ~613Mpc

E

Dec (deg)

3. Huge LQG:
73 quasars (black rings)

[ =~1226 Mpc

155 160 165 170 175

RA (deg)
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4. Great GRB Wall
(Hercules-Corona-Borealis Great Wall)

A region of the sky seen in the data set mapping of gamma-ray bursts (GRBs) that
has been found to have an unusually higher concentration of similarly distanced

GRBs than the expected average distribution.
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These huge structures are the great challenge!

- Can we explain such big structures?

- Do larger structures exists?

- From which scales does the cosmological principle start
to work?

- Can we use the Newtonian potential for the structure
formation simulation on any cosmological scale?
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Two main distinct approaches to structure growth investigation

relativistic N-body simulations
perturbation generally based on Newtonian
theory cosmological approximation
Keywords

early Universe; late Universe;

linearity; large scales nonlinearity; small scales
fails in describing do not take into account

nonlinear dynamics relativistic effects becoming

at small distances non-negligible at large distances



Origin of cosmic structures

Gravitational
Cosmic structures are formed (grow potential

up) due to the gravitational interaction DO.VD =0
2

Newtonian mechanics

47 K 5

Poisson eq. A® = z pzzpc , P — rest-mass density
C

p___zmng(]‘é_kn) Neumann-Seeliger paradox

m
P - S— This sum is divergent in the case
O(R)~Y =T Tissumis diergentinth
_ of infinite number of sources
R-R,
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The Neumann-Seeliger paradox

should be resolved within the framework of
General Relativity (taking into account

relativistic effects)

Einstein equations
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Background equations

Background FLRW metric (homogeneous and isotropic):

2 2 2
ds* = a* (dn’ - 5,,dx"dx” )
/ - w
scale factor a(n) conformal time  comoving spatial coordinate

physical distance: K = qr

Background matter (CDM 0):

. p=
p.c”
energy density £ — ,[_)02 = C3 > :5(: = CONst <«—
a

comoving
rest mass density
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Friedmann equations

in the framework of the pure ACMD model (with a negligible radiation
contribution):

12 -y rr2
! S B
energy density of ———> cosmological
nonrelativistic constant

pressureless matter

4 \ A=%2  k=82G,/c"
| overline: average value ; a /

prime: derivative with Newtonian
s respect to 7 gravitational constant
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Newtonian approximation in cosmology

without relativistic effects (see e.g. Peebles, Gorbunov & Rubakov)

4G 47G 0, _
A D= 7[2 a’dp = 772 Pe Sp.=p,—p., A =a’A
C (3 a
Solution: Pe =Zn:mn5(7‘i‘;)
(I>~jd?’p”=7':p", —VCD~J‘dF’—p”=F'3£F—F’)~Z T _(F-F)

n

|7 -7

}"—}"nl

are not We”~deﬁned!
Can we resolve both of these problems:

- to define an upper limit on the size of cosmic structures;
- to obtain well-defined form of the gravitational potential?

Solution: relativistic effects! New Trends in HEP, Odesa, 2019
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Gravitational potential in general relativity

Theory of scalar perturbations
gravitational potential

Perturbed FLRW metric: ds’ =a [1+2(D7d77 1 2@)5 dx“ dx” ]

Linearized Einstein equations (® «1):

Gy, =xkT) +A = Aq>—3ﬁ(q>'+ﬁcb)=%xa25T°

0(CDM)
L

Gﬂzch;JrA = (D”+3H(D’+(2H’+H )(I):Q
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We consider CDM as a set of point-like inhomogeneities (e.g. galaxies, groups and
clusters of galaxies).

Energy-momentum tensor (EMT) of inhomogeneities (e.g. Landau&Lifshitz):

; mc’  dx dxt 1
Tk:z N2 5(1’—1‘")
(=g)“[nl dn dn ds,/dn

. _a dx’ av” Ve . . .
ve = G L a =1,2,3 «—— comoving peculiar velocity

" dn T dt c c’

Zm 5 1' l‘ z Pen ~— comoving rest-mass density



Due to explicit dependence 750
on g. and p

EMT perturbations:

2 — 2 effects of nonlinearity:
| 5 51006 + 3pcc (D 5 = — p — canbe
0(CDM) ™~ 3 3 o Of= P Pe i
¢ a > P,
0 _ T T " -
oT, ———Zm5 r r _——chn 7, STy =0
effective velocity potential: ch,,:n =VE +>ﬁ
N 2
O p((p, H(I))=—K(125T0CDM CI)'+Hd)=—Kc =

| 2a

|
A,®—3H(®'+HD) = > Ka25TO

p

0(CDM)
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Helmholtz (not Poisson!) equation

~ =2 (F=7)%,
: 2 2fy | B Xme—
Ac(D —a—ZCI) = Kigpc - 3KC H E/ 4z - F-T,
A 2a 2a
3k 1" 24’ 2t (a) _ Kkpc
A=|5¢ - — 2 2 ’ QM - 2 3
. 3Kp,c 9H,Q), \ a, 3H,a,

ﬂ, defines the range of the Yukawa interaction!

At present time A4, ®3700 Mpc
Cosmological screening (i.e. finite /1) is the effect of the background: E - o O
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2.

—

1 Newton potential Yukawa potential
N m— >»\ pd
Kp.C
CD — [4 _ n .
2a a Z|F—F xp(~4,)

31cc HZ [ ’7)]1 (1+q, )exp(-q,)

87m -

=l(ﬁ_1§,,)

PR (and ignore velocities as a
Newtonian approximation: |[R=R,|<4 source of the grav. field)

Exponential suppression: ]R—Rn‘»/% (Great GRBs Wall)

the largest structures <A (4, ~3700 Mpc >3066 Mpc );
the absence of the Neumann-Seeliger paradoX. New Trends in HEP, Odesa, 2019

18



The Yukawa interaction range and the horizons
koc” \3(l+q) H

At the present time: A, ~3.7x10° Mpc
Hubble horizon (radius): (this horizon is not really a physical size)

%‘I ~4.1x10° Mpc > 4, VH’F A  at the deceleration parameter g = _%aHz) =-2/3
0

a=1.16aqa,

Particle horizon: (this is the farthest distance that any photon can freely stream
t from the Big Bang - the size of the observable Universe)
¢ cdt

(%)= a(tO)J. 2) ~14.26x10° Mpc - radius of the observable Universe
0
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Universality of the Yukawa suppression

Additionally two sets of continuous perfect fluids:

. Linear EoS p; = @,&;, @ =const . Non linear EoS P :fJ (EJ) |
\II( 4

Dark energy: (pz—é‘), radiation: (p=8/3) etc

Total ® can be split into individual contributions from
inhomogeneities of each matter source:

(D;CDCDM _{_ZCDI +Z‘,(DJ |

discrete CDM |
continuous perfect fluids

New Trends in HEP, Odesa, 2019
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Each of components O satisfies the Helmholtz eq. with the same A

2 2 2 5
- a Kc 3xkc"H _
A D cpy _?(DCDM =—0p,— =

2a ¢ 2a
2
a K 04, 3/<H l+w
~ Acq)l __2(1) = 5 a1+3(o, 5 1+3a),1 51

a’ xa® _ 3ka*H
| AD, _?q).l =T‘915J —T(EJ +pJ)

1 3k

22 e+ 21+ P+ 26 ) [ 21140

|‘ I

|

p—¢ = =0

A~ /10 ~ 3700 Mpc at present time
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Conclusions

1. Our approach works at all cosmological scales (i.e.
sub-horizon and super-horizon) and incorporates linear and
nonlinear effects with respect to the energy density
fluctuations ( dg/ & can be >1).

2. The gravitational potential can be split into individual
contributions from inhomogeneities of each matter source (i.e.
discrete CDM and continuous DE). Each of these contributions
satisfies its own Helmholtz-type equation.
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3. The gravitational potentials are characterized by a finite
time-dependent Yukawa interaction range being the same
for each individual contributions. At the present time

A~ A, ~3700 Mpc

The value ﬂ.o is bigger than the largest known structure
in the Universe (Great GRBs Wall):

A, 3700 Mpc > 3066 Mpc
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4. At distances [R-R,|>4 the gravitational potential of the
n-th fluctuation is exponentially suppressed. This suppression
is called the cosmological screening. The cosmological

background is responsible for this effect (greetings to Ernst
Mach!).

|R—ﬁn|<</1 — Newton |1—é—1—én‘>>/1 —— Yukawa

exp q,)

Newton is wrong at the cosmological distances |R-E,|>4
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