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The scalar field coupled to inhomogeneities may exist and 

can provide the late cosmic acceleration.
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The great challenge for modern cosmology
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between its observed value and the theoretically 
expected one, which is related to the vacuum energy 
density. 

- The cancellation mechanism between the various energy 
densities that would reduce this large theoretical value of 
the cosmological constant is still a mystery. 

- In addition, the ΛCDM model (as well as a lot of other 
dark energy models) faces the coincidence problem, that 
is the question, why is the cosmological constant at 
present of the same order of magnitude as the energy 
density of dark matter? 

Alternative models using scalar 
fields to explain the DE: 

- quintessence (-1 < ω <0)
- phantom (ω < -1)
- quintom (ω = -1 crossing)

                               ω  =  
const?
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Friedman-Lemaître-Robertson-Walker background metric:

 
The Universe is filled with a scalar field minimally coupled
to gravity. Its action and energy-momentum tensor:

                                                              ,

The equation of motion reads:

For the background energy density and pressure we get:

where the prime denotes the derivative with respect to conformal time η. 

The background equation of motion is:                                         .

The Friedmann and Raychaudhuri equations for our cosmological model:

                                                                        ,
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The metrics:
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The metrics:

The perturbations of the scalar field energy-momentum tensor:

Where we split the sc.f. into the background part            and its fluctuation part             :                     

For the considered model, Einstein equations are reduced (after linearising the system of 3 equations) to:



    Spatial distributions of          is defined by Ф      
After substitution of the second Einstein equation, usage of some well-known relations and help of the 
background Friedmann and Raychaudhuri equations and the equation of motion, the third Einstein equation 
takes the form:
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Since the definition for      , taking into account the resulted second and third Einstein equations, some 
algebra and after substitution             , where    is a function of    and the spatial coordinates, the first 
Einstein equation reads:

Then, we are looking for the solutions of this equation which have a Newtonian limit near gravitating 
masses.



The coupled scalar field can provide the late cosmic acceleration
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Conclusions

- Considered scalar field behaves as a two component perfect fluid. 
- Its potential should be very at at the present time.
- The fluctuations of this field are absent but the fluctuations of the energy density and 

pressure are non-zero. These fluctuations are concentrated around galaxies, in full 
agreement with the coupling condition.

The coupled scalar fields may exist under the conditions mentioned above and can provide the 
late cosmic acceleration.
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Inhomogeneous Universe
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scales 100 - 200 pc: stars

Vincent Van Gogh

NASA's Great Observatories

scales 1 - 20 Mpc: 
galaxies and groups of 

galaxies

1



Scales 50-200 Mpc: filaments and voids
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Sloan Digital Sky Survey

Supercomputer simulation

Newtonian potential          is used to simulate the structure formation. 

   Up to which scales can we use the Newtonian potential? 

2



Cosmological Principle (CP)

          Physical background for the CP: 
CP is the notion that the spatial distribution of matter in the 
Universe is homogeneous and isotropic when viewed on large 
enough scales

However, recent observations (XXI Сentury): 

There are cosmic structures with                      . 
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The largest cosmic structures

Giant filament 
consisting of a number 
of superclusters
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1. Sloan Great Wall
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Large Quasar Groups

2. Clowes-Campusano LQG: 
  34 quasars (red crosses)

3. Huge LQG:
  73 quasars (black rings)
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4. Great GRB Wall 
(Hercules-Corona-Borealis Great Wall)

A region of the sky seen in the data set mapping of gamma-ray bursts (GRBs) that 
has been found to have an unusually higher concentration of similarly distanced 
GRBs than the expected average distribution.
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These huge structures are the great challenge!

- Can we explain such big structures? 
- Do larger structures exists? 
- From which scales does the cosmological principle start 

to work? 
- Can we use the Newtonian potential for the structure 

formation simulation on any cosmological scale?

?
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Two main distinct approaches to structure growth investigation
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Origin of cosmic structures
Cosmic structures are formed (grow 
up) due to the gravitational interaction

Newtonian mechanics

Poisson eq.
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Neumann-Seeliger paradox 
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The Neumann-Seeliger paradox 
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should be resolved within the framework of 
General Relativity (taking into account 
relativistic effects)

Einstein equations
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Background equations
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Background FLRW metric (homogeneous and isotropic):

Background matter (CDM:         ):
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Friedmann equations
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in the framework of the pure ΛCMD model (with a negligible radiation 
contribution): 
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Newtonian approximation in cosmology
without relativistic effects (see e.g. Peebles, Gorbunov & Rubakov)

Solution:

are not well-defined!

Can we resolve both of these problems: 
- to define an upper limit on the size of cosmic structures; 
- to obtain well-defined form of the gravitational potential? 

Solution: relativistic effects! New Trends in HEP, Odesa, 2019
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Gravitational potential in general relativity
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   Theory of scalar perturbations

Perturbed FLRW metric:

gravitational potential

Linearized Einstein equations          :    

14
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We consider CDM as a set of point-like inhomogeneities (e.g. galaxies, groups and 
clusters of galaxies).

Energy-momentum tensor (EMT) of inhomogeneities (e.g. Landau&Lifshitz):

comoving peculiar velocity 

comoving rest-mass density

15



EMT perturbations:
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Due to explicit dependence 
on 

effects of nonlinearity:

effective velocity potential:

16



Helmholtz (not Poisson!) equation
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defines the range of the Yukawa interaction!

     At present time    

Cosmological screening (i.e. finite   ) is the effect of the background: 

17
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1. Newtonian approximation:
2.   Exponential suppression:

    the largest structures                                       ;
    the absence of the Neumann-Seeliger paradox.

(and ignore velocities as a 
source of the grav. field)

(Great GRBs Wall)
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The Yukawa interaction range and the horizons
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At the present time: 
     Hubble horizon (radius):                  (this horizon is not really a physical size)

Particle horizon:          (this is the farthest distance that any photon can freely stream   
from the Big Bang – the size of the observable Universe)

- radius of the observable Universe

19



Universality of the Yukawa suppression
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Additionally two sets of continuous perfect fluids: 

Linear EoS . Non linear EoS

Dark energy:             ,   radiation:                  etc

Total        can be split into individual contributions from 
inhomogeneities of each matter source:

discrete CDM
continuous perfect fluids

20
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at present time

Each of components Ф satisfies the Helmholtz eq. with the same   ! 
21



Conclusions
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1. Our approach works at all cosmological scales (i.e. 
sub-horizon and super-horizon) and incorporates linear and 
nonlinear effects with respect to the energy density 
fluctuations (          can be    1). 

2. The gravitational potential can be split into individual 
contributions from inhomogeneities of each matter source (i.e. 
discrete CDM and continuous DE). Each of these contributions 
satisfies its own Helmholtz-type equation. 
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3. The gravitational potentials are characterized by a finite 
time-dependent Yukawa interaction range being the same 
for each individual contributions. At the present time

The value      is bigger than the largest known structure 
in the Universe (Great GRBs Wall): 
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4. At distances                the gravitational potential of the 
n-th fluctuation is exponentially suppressed. This suppression 
is called the cosmological screening. The cosmological 
background is responsible for this effect (greetings to Ernst 
Mach!). 

Newton Yukawa

Newton is wrong at the cosmological distances
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