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(N + 1)P(N + 1) = g(N)P(N)    where    g(N) = α + βN,         (1) 

Recurrence relation:  
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N 
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N 

2-NBD  improves only agreement at large N, the ratio  R = data/fit 
deviates dramatically from unity at small N for all fits.  
 
 
 
There must be some additional information hidden in the small N 
region, not investigated yet [ J. Phys. G44 (2017) 015002 – Modified 
Negative Binomial  - (MNB)] . 
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N 

p= m/(m+k)   p(N) 



7 

In the clan model (CM) one allows 
for the production of very heavy 
clans, in the dynamical CM (DCM) 
there is a limit for this growth 
corresponding to a mass of 2.1 
GeV.  
 
The growth of the energy results 
in the formation of new clusters 
rather than in the production of 
heavier ones .  
 
Newly produced particles find 
themselves more likely in new 
clans than remaining in the old 
ones.  
 
This is reflected in the  
 k−1 = P1(2)/P2(2), < 1.  
  that particles more likely 
occur in two, not in one, clans. 

This limiting mass corresponds to the very old idea of the so called H-quanta as intermediate 
objects being produced in high energy collisions: S. Hasegawa, PTP26(1961)150; 29(1963)128 

Some comments on NBD and MNBD: 
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(*) The clan model of multiparticle production employs a cascading mechanism  of 
      particle production in which one distinguishes groups of particles of common 
      ancestry, called clans.  
 
(*) Clans are supposed to be produced in an independent way, therefore their 
     multiplicity is poissonian.  
 
(*)  Assuming that particles inside a clan are produced according to a logarithmic 
      distribution, one obtains NBD.  In the standard scenario the multiplicity of 
      clans for a given energy √s and in some fixed rapidity window remains constant,  
      <NC > = const, and, in a single event, the average number of particles per clan, 
       increases with multiplicity N.  
        
(*)  In such approach the parameters m and k are related to the numbers of clans 
      and to the amount of aggregation between clans and the 
       parameter 1/k  is interpreted as a measure of the  
       aggregation of particles  into clans with P1,2(2) being the  
       probabilities to  have two particles in, respectively, 1 or 2 clans . 
 

Some comments on NBD and MNBD (cont): 
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(*)  There is a room for changes in the P(N) resulting in  agreement with 
      data in the whole region of N     The recurrence relation (1) is too 
       restricted to be helpful. 
 
(*)   Use a more general form of the recurrence relation used in  
       counting statistics when dealing with cascade  stochastic processes 
       [B.E.A.Saleh and M.K.Teich, Proc. IEEE 70, 229 (1982)] 
 
 
    
                                                                                                (2) 
 
 
                                                           
                                      
(*)   Contrary to (1), it connects now all multiplicities by means of  
        some coefficients Cj   they contain the memory of particle  
        N + 1 about all the  N − j previously produced particles.  
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(*)   Coefficients Cj replace ratio R = data/fit in quality assessment 
       of P(N)  
 
(*)    They can be directly calculated from the experimentally measured 
         P(N) by reversing (2): 
 
 
 
 
                                                                                                     (3) 
 
 
 
 
(*)  So far they were used already in:  V.D.Rusov et al.  PLB504(2001)213 
      and NPA764(2006)460  to multiparticle phenomenology. 
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Result: 
 
 
(*)  Cj obtained from data show  
      distinct  oscillatory behaviour  
      gradually  disappearing with N.   
 
(*)  It can be reproduced only by  
      the MNB model (for which  
      R(N) = 1 for  all N). 
 
(*)  Oscillations of Cj are seen for different pseudorapidity windows 
       and  in data from all LHC experiments and energies.  
 
(*) The only condition is that statistics of the experiment is high 
      enough, for small statistics oscillations became too fuzzy to be  
      recognized.   
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It means that: 
 
(*) The single NBD is not able to  reproduce data because  

      its   Cj  do not oscillate,   they are equal to: 
 
 
       
 
 
 
        
 
 
(*)  If we limit ourselves only to NBD, oscillations occur only  
      for multi-NBD   
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Summarizing the NBD case: 
 
 
(*)  Single NBD is not able to reproduce data, oscillations can occur only for  

       combinations of NBD , however for the 2-NBD we were not  able to find  

       parameters of 2-NBD allowing for reasonable description of P(N) and Cj 

        at the same time.  

 

(*)  The best result so far is the 3-NBD fit proposed by  I. J. Zborovsky,  

       J.Phys. G40(2013) 055005, in which only P(N) and R were considered and 

       Cj   were not used.  It is based on the claim  that there is a place in data 

       for a third  component aiming to describe the low N events (what agrees 

       with our observation that  the cause of this  effect seems to be localized 

       at small N ).  
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Our fits using 3NBD with (Z) parameters  [IJMPA33 (2018)1830008]. 
 
Note:   (*) improved agreement with data,  
 
But:     (*) the low N region of P(N) still shows some  deviations resulting  in R 
                  departing from unity at small N and in  Cj missing data for large  j. 
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Our fits using 3NBD with (Z) parameters  [IJMPA33 (2018)1830008]. 
 
Note:   (*) improved agreement with data,  
But: 
            (*) the low N region of P(N) still shows some  deviations resulting  in R 
                  departing from unity at small N and in  Cj missing data for large  j. 

However:   

Coefficients Cj   have been successfully accounted  for  

(fitted using our approach) in recent version of  3-NBD  

by IJZ in EPJC78(2018)816 . 



 (*)   It turns out that coefficients  Cj   oscillate in all distributions of 
        the BD type, they  are equal to: 
 
          
 
 
 
 
(*)  The amplitude of oscillations  
       depends on the emission  
       probability  p:  it increases  
       with rank j for p > 0.5 and  
       decreases for p < 0.5,  
        period of oscillations is 2.  
 
(*)  However, they lacks the  
      fading down feature  
      of the Cj observed   
      experimentally  
                                      
                      BD used alone cannot explaindata 
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From recurrence relation: modified combinants Cj . 
 
But from generating functions:                               : combinants C*

j  (#)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(#) S.K.Kauffmann,M.Gyulassy,J. Phys. A11(1978)1715 (1978);            
         R.Vasudevan et al., J.PA17(1984)989; 
         S. Hegyi, PlB309(1993)443, PLB318(1993)642, PlB463(1999)126;  
         R.Botet,M.Płoszajczak, Universal fluctuations, The phenomenology of hadronic matter,(WS 2002);          
         W.Kittel and E.A.De Wolf,  Soft Multihadron Dynamics, (WS 2005) 
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What oscillations tell us?   
 
                                                     C*

j  were used in ”Description of pion 
                                                      multiplicities using combinants”  by  
                                                     A.B.Balantekin , J.E.Seger,  PlB266(1991)231, 
                                                     arguing that: 
 
”Combinants can be a useful tool to distinguish between bosons coming 
from the secondary decay of other particles such as deltas and bosons 
emitted from thermally equilibrated sources.” 
 
Two scenarios were considered: 
 
(i) N sources emitting bosons without any restrictions on their number 
                     NBD and smooth and diminishing combinants. 
 
(ii) M sources emitting only a limited number of bosons each 
                      BD and oscillating combinants.  
 
 
         Modified combinants Cj should follow the same behavior 
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Comments: 
 
(*) Multiplicity distributions P(N) are usually studied by analyzing factorial   
     moments: 
   
 
 
     cumulant factorial moments:  
 
 
     or their ratios: 
 
      which are very sensitive to the details of the multiplicity distribution.  
 
(*) They seem to be well described by perturbative QCD considerations,  
      especially their oscillations in sign as a function of the rank q.  
 
(*)  Note that  Kq can be expressed as an infinite series of  Cj    and     
                 Cj can be expressed as an infinite series of Kq : 
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(*) By analogy to factorial cumulants, the combinants can be understood as  
     exclusive correlation integrals .  
 
(*) However, cumulants and combinants  differ in the region of phase space they 
     are most suitable to  study:  
 
     - cumulants   are particularly well suited for the study of densely populated  
                            phase-space bins,  
 
     - combinants   are better suited for the study of sparsely populated regions, 
                             and their calculation requires only a finite number of P(N),  
                             with N < j;  which compensates the drawback caused by the  
                             requirement that one must have P(0) > 0. 
 
(*)  Combinants are finite combinations of the  probability ratios P(N)/P(0),  
                          therfore they do not suffer from a bias (empty-bin  effect) 
                          present at high resolution  in factorial moments and cumulants. 
 
(*)  Combinants share with cumulants property of additivity. 
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Enhanced void probability: P(0) > P(1) 

Experimental smooth multiplicity distributions P (N) displayed for low multiplicities and for 

energies ranging from 0.2 TeV  up to 8 TeV . Note the peculiar enhancement of the void 

probability P (0) (rather small at 0.2 TeV but quite substantial at 8 TeV).  

  It can be reproduced only by using a 2-component  compound binomial distribution 

(BD and NBD). 
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Enhanced void probability: Void probability is strongly correlated with 

                                                 the modified combinants:  
 
 
 
(*) The P(0) > P(1) property is possible only when       <N> C0 <  1 .  For most 

multiplicity distributions we also have that P(2) > P(1), which results in 

additional condition:     C1  > C0 (2 - <N> C0 ) ,  together they result   C1  > C0 .  

 

(*) This initial increase of Cj cannot continue for all ranks j; because of the 

normalization condition   ∑ 𝑪𝑪𝒋𝒋 = 𝟏𝟏   ∞
𝒋𝒋=𝟎𝟎 we should observe some kind of 

nonmonotonic behaviour of Cj with rank j. 

 

(*) Therefore, all multiplicity distributions for which the modified  

combinants Cj decrease monotonically with rank j (like, for example, the 

NBD) do not exhibit the enhanced void probability. 

𝑷𝑷 𝟎𝟎  = 𝐞𝐞𝐞𝐞𝐞𝐞 −∑ 𝑵𝑵
𝒋𝒋+𝟏𝟏

∞
𝒋𝒋=𝟎𝟎 𝑪𝑪𝒋𝒋  
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 Neither  NBD or BD alone can describe data  
                                                               Compound distributions (CD)  
 
 CD: production process consists of M objects  produced  according to  
        distribution  f(M)  (defined  by generating function  F(z)), which  
        subsequently  decay  independently  into a number of secondaries, 
        ni=1,...,M,  following some other (the same for all M) distribution, g(n)   
        (defined by a generating  function   G(z)) (#). 
 
 
       The resultant multiplicity distribution, 
       is compound distribution of f and g  
 
     with generating function: 
         
       for which : 
 
 
     (#)  Note that NBD is compound Poisson distribution with the number of clusters   
              given by a Poissonian distribution and the particle inside the clusters distributed 
              according to a logarithmic distribution. 
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CD in action:  
 
The immediate consequence of  relation  H(z)=F[G(z)]   is that, in the case where  

f(M)   is a Poisson distribution with generating function    F(z) = exp[λ(z-1)]    
then, for any other distribution g(n) with generating function  G(z), the                       

combinants obtained from the compound distribution                                 (and 

calculated using  generating function approach) are not oscillating and are 

 equal to             𝑪𝑪𝒋𝒋 = 𝝀𝝀 𝒋𝒋+𝟏𝟏
𝑵𝑵

g 𝒋𝒋 + 𝟏𝟏 . 

This explains why Cj   from the  NBD (which is compound distribution of Poisson 

with logarithmic) are not oscillating and why Cj  from  any compound distribution 

based on NBD will not oscilate as well.  
 

The choice of a BD as the basis of the used CD is therefore crucial to 
obtain the oscillatory  behavior of Cj . 



25 

Note:   This result explains also the apparent success of the  

          multi-NBD type  of  P (N)  in fitting data on the Cj .  
 
(*)  This happens because the sum of the NBD, with  weights given by the BD 
and with the respectively chosen values of k and <N> for each component, gives  
the same P (N) as the compound  distribution of the NB-NBD type (i.e., based on 
the NB). 
. 
(*) This is because the sum of M variables, each from the NBD characterized 
by parameters (p, k), is described by a NBD characterized by (p, Mk). In the 
case where M = 1, . . . , K is distributed according to a BD, we have a  
K-component NBD                                                        (where consecutive NBD 
have precisely defined  parameters k),   which  leads in a   natural way to the 
appearance of oscillations. 
 
(*)  However,  folding several NBD is not exactly  the same as compound 
distribution  of of the type (BD and NBD) in which one can have situation with 
naught NBD present. It means than OLNY COMPOUND BD can reproduce the 
enhanced void probability.  
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CD in action: example of Compound Binomial Distributions  
                                         (CBD = BD and Poisson ) 
 
Poisson:                                                  ( C0 =2,   Cj>0 =0 )  
 
BD: 
 
CBD:                                                                        Period of oscillations 
                                                                               is 2λ = 10 
 
                                                              Note:   the choice of a BD as  
                                                              the basis of the used CD is  
                                                               crucial to obtain the oscillatory 
                                                               behavior of Cj . 
 
                                                               For example: a compound 
                                                               distribution formed from a  
                                                               NBD and some other NBD 
                                                                provides smooth Cj . 
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CD in action: example of 3-component CBD (BD&Poisson)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  
Parameters: ω1 = 0.34, ω2 = 0.4, ω3 = 0.26;  
                     p1 = 0.22, p2 = 0.22, p3 = 0.12;  
                     K1 = 10, K2 = 12, K3 = 30; 
                     λ1 = 4, λ2 = 9, λ3 = 14 
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CD in action: example of 3-component CBD (BD&Poisson)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
.  
Parameters: ω1 = 0.34, ω2 = 0.4, ω3 = 0.26;  
                     p1 = 0.22, p2 = 0.22, p3 = 0.12;  
                     K1 = 10, K2 = 12, K3 = 30; 
                     λ1 = 4, λ2 = 9, λ3 = 14 

This time the fit to P (N) is quite good and the modified combinants Cj follow 
an oscillatory pattern as far as the period of the oscillations is concerned, 
albeit their amplitudes still decay too slowly. 



29 

CD in action:    example of 2-component CBD (BD&NBD)  
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CD in action:    example of 2-component CBD (BD&NBD)  
 

The results of using Eq. (141) (with parameters: K1 = K2 = 3, p1 = p2 = 0.7, k1 = 4, k2 = 2.2, 
m1 = 6, m2 = 18.5 anThid w1 = w2 = 0.5) look even better than before. This means that 

using multicomponent compound distributions based on BD (responsible for oscillations of 
Cj ) and some other distribution providing damping of oscillations for large N, one could 

probably describe the data. 

This improves substantially behaviour of Cj.                 One has to use 
multicomponent CD based on BD (responsible for  oscillations)  and 
some other distribution providing damping of oscillations for large N.  
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CD in action:    example of 2-component CBD (BD&NBD)  
 

Note that the enhancement P (0) > P (1) is also reproduced in this approach.  
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Recent ALICE data J.Adam et al. EPJC 77(2016)852   
(NSD events, 7 TeV, 3 rapidity windows); 
 
 
 
 
 
 
 
 
 
 
 
 
 
(*) Increase of the period of oscillations and their amplitude with the width of 
     rapidity windows .  
(*) The previous fading down of  amplitude is replaced by the (almost) constant 
       behavior or dramatic increase. 
(*)  <N> ∼ ∆η, one  at least part of this increase comes from the increase of   
      <N> with ∆η.  
(*)  This can be only partially true. 
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To summarize:   
 
(*) We argue that only compound distributions based on the BD  (like) and 
      the NBD (like) components can   fit adequately  observed  oscillations of 
      modified   combinants   Cj and enhaced void probability.   
 
(*) The question of which particular theoretical mechanism is in  work  
      remains,  however, (at the moment…) still open.  
 
(*)  Hint (?):  
      - NBD belongs to the class of the so-called infinite divisible distributions, 
         BD does not.  
      -  In literature one finds that  „ combinants of all ranks are all non-negative 
         if and only if  the probability distribution is infinitely divisible”  
 
       modified combinants should share this property.  
 
      [ However, for a uniform distribution in the interval (0, K), which is not  
        infinitely divisible, one has  Cj = 2/(K + 1)…..(?)] 
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Comparison of p𝒑𝒑� results and the e+e- annihilations case(#): 
 
 
 
 
 
 
 
 
 
 
 
Note that:   
 
(*) A large number of papers suggest some kind of universality in the mechanisms of hadro 
      production in e+e− annihilations and in pp and p𝑝̅𝑝 collisions.  
 
(*) However, the modified combinant analysis reveals differences between these processes. 
      Namely: in e+e− annihilations we observe oscillations of Cj with period 2, in pp and pp¯  
      collisions the period of oscillation is ∼ 10 times longer and the amplitude of oscillations in 
      both types of processes differs drastically. 

(#) H.W.Ang, A.H.Chan,M. Ghaffar, Q.Leong, M.Rybczyński, G.Wilk,Z.Włodarczyk, arXiv.1812.08840. 

p𝒑𝒑� 
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  Thank you for your attention 
 
 
 
                                Дякуємо Вам за увагу  
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Supplementary material 
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Estimations of errors -1: 

(*)  A detailed discussion of the sensitivity of the modified combinants Cj  to the measurement 
       uncertainties is given in Zborovsky, EPJC78(2018)816 . 
 
(*) In our case one observes that statistical errors cause only some chaotic spread of the 
      measured Cj but do not result in periodic oscillations. In the case of monotonic behavior of 
      Cj as function of the rank j (for example, when one uses the NBD) one gets no oscillations  
     from errors.  
 
(*) However, in the case when one observes oscillations, systematic errors can blur the whole 
      picture of oscillation (making them invisible). The most important point is that the  
      oscillations of Cj are highly correlated (they are not chaotically scattered).  
     Statistical errors do not  give such oscillations. 
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Estimations of errors -2a: 

 (a) Monte Carlo evaluated coefficients Cj emerging from NBD with  
       parameters: <N>= 25.5 and k = 1.45. With increasing statistics  
       points are merging to a continuous line. 
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Estimations of errors -2b: 

(b) Errors of <N>Cj evaluated using the systematic and statistical 
      uncertainties of P(N) given by ALICE. 
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Estimations of errors -2c: 

(c) Monte Carlo evaluated coefficients  <N>Cj emerging from the systematic 
     and statistical errors of P(N). The curve presented here denotes the fit to 
     the original coefficients Cj obtained from the measured P(N), it is not the 
     fit to the points shown. 



41 

Estimations of errors -2d: 

(d) For the same data as before the errors were evaluated assuming only 
      statistical uncertainties of the measured P(N) with a poissonian distribution  
      of events in each bin, i.e., Var[P(N)] = P(N)/Nstat. Note that in this case  
      statistical errors do not give any noticeable errors of Cj. 
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Estimations of errors -2e: 

(e) Monte Carlo evaluated coefficients  <N>Cj with only statistical errors 
     of P(N) accounted for.The continuous curve represents the fit to the 
      original coefficients Cj obtained from the measured P(N). 
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Estimations of errors -2f: 

(f) The modified combinants Cj emerging from the ALICE data on P(N) 
     (continuous curve) in envelope corresponding to the systematic uncertainties 
     of data, P(N) +/- Δ[P(N)]. 
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Estimations of errors -3: 
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Estimation of the statistical significance of the oscillating behavior of the Cj  using the 
periodogram-based Fisher g-statistic test (#) which determines whether a peak in the 
periodogram is significant or not. It proceeds as follows: given a series y(j) = <N>C of  
length L, the periodogram I(ω) is first computed as 
 
                                                                                        Ievaluated at the discrete normalized 
  
frequencies ωl=2πl/L, l=0,1,…,a = [(L − 1)/2],  [x] denotes the integer part of x.   
If a series has a significant sinusoidal component with frequency ωk, then the  
periodogram will exhibit a peak at that frequency. 

Fisher derived an exact test of the significance of the spectral peak by introducing the  

Fisher g-statistic                             . One is testing the null hypothesis, H0, that the spectral  
peak is statistically insignificant against the alternative hypothesis, H1, that there is a 
periodic component in the signal y(j). Under the Gaussian noise assumption, the exact 
distribution of the g-statistic under the null hypothesis H0 is given by 
                                                                                           

(#) R.A. Fisher, Proc. R. Soc. A 125, 54 (1929);  P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods (2nd Ed.), 
(Springer Verlag, 1991), Chapter 10. 

Estimations of errors -4: 
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Normalized periodogram I(ω) for <N>Cj calculated 
from ALICE data for pp at 7 TeV and |η| < 3. 

Estimations of errors -5: 

Note the large observed value of g,  

a peak in the periodogram, which  

indicates the existence of a strong  

periodic component and leads us  

to reject the null hypothesis. The 

probability that the spectral peak is  

statistically insignificant is 10-16. 

It means that the probability to observe oscillations as a result of errors 
is extremaly small. Therefore, we conclude, that they show enough power 
to disclose the fine details of experimentally measured multiplicity 
distributions, and can shed new light on the dynamics of multiparticle 
production processes. 
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Example of the e+e- annihilations case(*): 
 
 
 
 
 
 
 
 
 
Data on P(N) measured in e+e− collisions by the ALEPH experiment at 91 GeV; the modified 
combinants Cj deduced from these data on P(N) and  the mean value <Cj/ξj> (averaging is 
performed over available ranks j) for even and odd ranks j evaluated from P(N) in different 
rapidity windows for ξ = 6.85, 2.35, 1.2 and 0.91 for |y| < 2.0, 1.5, 1.0 and 0.5, respectively. 
 
Note that:   
(*) A large number of papers suggest some kind of universality in the mechanisms of hadro 
      production in e+e− annihilations and in pp and pp¯ collisions.  
(*) However, the modified combinant analysis reveals differences between these processes. 
      Namely: in e+e− annihilations we observe oscillations of Cj with period 2, in pp and pp¯  
      collisions the period of oscillation is ∼ 10 times longer and the amplitude of oscillations in 
      both types of processes differs drastically. 

H.W.Ang, A.H.Chan,M. Ghaffar, Q.Leong, M.Rybczyński, G.Wilk,Z.Włodarczyk, arXiv.1812.08840. 
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