The shape of the interaction region of colliding protons in a Regge model

István Szanyi
in collaboration with László Jenkovszky
Eötvös Loránd University
New Trends in High-Energy Physics Conference
May 12 – 18, 2019, Odessa, Ukraine
Total, elastic and inelastic cross sections follow the expectations from lower energies.

pp and $p\bar{p}$ total, elastic and inelastic cross sections measurements.
Introduction

- Very low value of the \(pp \rho \)-parameter at 13 TeV.

\[\rho(s) = \frac{\text{Re}A(s, t = 0)}{\text{Im}A(s, t = 0)} \]

\(\rho \) and \(p\bar{p} \) \(\rho \)-parameter measurements.

Introduction

- Rapid rise of the \(pp \) forward slope from about 3 TeV.

\[B(s) = \frac{d}{dt} \left(\ln \frac{d\sigma_{el}}{dt} (s, t) \right) \bigg|_{t=0} \]

Low-$|t|$ structure in the pp differential cross section (the so called "break").

Normalized form of the elastic pp low-$|t|$ differential cross section data measured by TOTEM at 8 and 13 TeV.

Introduction

- Absence of secondary dips and bumps in the pp differential cross section.

Elastic pp differential cross section preliminary data measured by TOTEM at 13 TeV.
The $d\sigma(t)/dt$ and the $\text{Im} h(b)$

\[
\frac{d\sigma_{\text{el}}}{dt}(s, t) = \frac{\pi}{s^2} |A(s, t)|^2
\]

- "break": deviation from an exponential form near $-t = 0.1 \text{ GeV}^2$
 → related to the two-pion exchange (t-channel unitarity)
 → pion cloud of the proton

- dip: diffraction minimum with energy dependent location
 → related to absorption corrections (s-channel unitarity)
 → decrease in $\text{Im} h(b)$ at small b

\[
h(s, b) = \frac{1}{s} \int_0^\infty A(s, t) J_0(b\sqrt{-t}) \sqrt{-t}d\sqrt{-t}
\]
Scattering amplitude: dipole Regge model

\[A(s, t)_{pp} = A_P(s, t) \pm A_0(s, t) + A_f(s, t) \pm A_\omega(s, t) + \ldots \]

- **Dipole pomeron and odderon:**

\[A_P(s, t) = i \frac{a_P^s}{b_P s_{0P}} \left[e^{r_{1P}^2(s)} - e^{r_{2P}^2(s)} \right] \]

\[r_{1P}^2(s) = b_P + L_P - i\pi/2 \quad r_{2P}^2(s) = L_P - i\pi/2 \quad L_P \equiv \ln(s/s_{0P}) \]

- **Pomeron and odderon trajectories:**

\[\alpha_P \equiv \alpha_P(t) = 1 + \delta_P + \alpha_{1P} t - \alpha_{2P} \left(\sqrt{4m^2_{\pi^2}} - t - 2m_{\pi} \right) \]

\[\alpha_0 \equiv \alpha_0(t) = 1 + \delta_0 + \alpha_{10} t - \alpha_{20} \left(\sqrt{9m^2_{\pi^2}} - t - 3m_{\pi} \right) \]

(With free parameters labeled by "O")

Exchange of a Regge trajectory in the t-channel.
Regge trajectories

- Reggeon (in general):
 - virtual particle with continuously varying spin \(J = \text{Re} \alpha(t) \) and virtuality \(t = m^2 \)
 - lying on the relevant trajectory (scattering at \(-t\))
 - at certain values of virtuality there are real particles (spectroscopy at \(+t\))

- Secondary reggeons (f, \(\omega\), \(\rho\), \(\phi\) ...) \(\rightarrow\) mesonic exchanges and meson spectra

- Pomeron (P) and odderon (O) \(\rightarrow\) gluonic exchanges and glueball spectra

\[
\alpha(t = m^2) = \text{Re} \alpha(t) \]

\[
\begin{align*}
J &= \text{Re} \alpha(t = m^2) \\
n &\approx 0.048 \\
\end{align*}
\]

- L. Jenkovszky, R. Schicker and I. Szanyi.

The Chew–Frautschi plots of the leading \(\rho\), \(\varphi\) and \(P\) complex Regge trajectories

Unitarity and overlap functions

- **Unitarity of the S-matrix**, \(SS^+ = 1\) → relation between the elastic scattering amplitude and the inelastic processes.

- The **unitarity constraint in impact parameter representation**:
 \[
 2\text{Im}h(s, b) = |h(s, b)|^2 + G_{\text{in}}(s, b)
 \]

- The **total, elastic and inelastic cross sections**:
 \[
 \sigma_{\text{tot}}(s) = 2 \int d^2b \, \text{Im}h(s, b) \\
 \sigma_{\text{el}}(s) = \int d^2b \, |h(s, b)|^2 \\
 \sigma_{\text{in}}(s) = \int d^2b \, G_{\text{in}}(s, b)
 \]

- The **inelastic overlap function** \(G_{\text{in}}\) → probability of absorption associated to a given \(b\) value → gives the shape of the interaction region:
 \[
 G_{\text{in}}(s, b) = 2\text{Im}h(s, b) - |h(s, b)|^2 \\
 \text{with} \quad 0 \leq G_{\text{in}}(s, b) \leq 1
 \]
Fit of $d\sigma(t)/dt$ @ 13 TeV

Normalized form of the differential cross section showing the low-|t| "break"

Source of the data:
Fit of $d\sigma(t)/dt$ @ 8 TeV

Normalized form of the differential cross section showing the low- $|t|$ “break”

Source of the data:

the high- $|t|$ data is preliminary
Fit of $d\sigma(t)/dt$ @ 7 TeV

Normalized form of the differential cross section showing the low-$|t|$ "break"

Source of the data: TOTEM Collab., EPL 101 (2013) 21002
Fit of $d\sigma(t)/dt$ @ 2.76 TeV

Normalized form of the differential cross section showing the low-|t| "break"

Source of the data:
Inelastic overlap function @ 13 TeV

Calculated $G_{\text{in}}(b)$.

$G_{\text{in}}(b)$ with logarithmic vertical axis.

$G_{\text{in}}(b)$ enlarged for low b values.

Similar results concerning the low-b G_{in}:

Inelastic overlap function @ 8 TeV

Calculated $G_{\text{in}}(b)$. $G_{\text{in}}(b)$ with logarithmic vertical axis. $G_{\text{in}}(b)$ enlarged for low b values.
Inelastic overlap function @ 7 TeV

Calculated $G_{\text{in}}(b)$.

$G_{\text{in}}(b)$ with logarithmic vertical axis.

$G_{\text{in}}(b)$ enlarged for low b values.
Inelastic overlap function @ 2.76 TeV

Calculated $G_{\text{in}}(b)$.

$G_{\text{in}}(b)$ with logarithmic vertical axis.

$G_{\text{in}}(b)$ enlarged for low b values.
Comparison of $G_{in}(b)$ at different energies

$G_{in}(b)$ calculated at different energies.

$G_{in}(b)$ calculated at different energies and illustrated with logarithmic vertical axis.

$G_{in}(b)$ calculated at different energies and enlarged for small b values.
Summary and conclusions

- Fits for the newest TOTEM proton-proton differential cross section data using a Regge model with dipole pomeron and odderon.
- Determination of the impact parameter amplitude.
- Calculation of inelastic overlap functions.
- Conclusions for the investigated energy range in the framework of the used model:
 - the proton is surrounded by pion cloud and its effective size is growing with energy
 - the interaction region of the colliding protons has a toroid-like shape (hollowness)
 - this shape is dominantly determined by the pomeron component of the amplitude to which the odderon gives a smaller contribution
 - the energy dependence of the minimum and the maximum of the G_{in} does not show a regularity
 - problems may arise from the fact that the exact t-dependent phase cannot be recovered from the experimental data
Thank you for your attention!

THE RESEARCH WAS SUPPORTED BY THE "MÁRTON ÁRON SZAKKOLLÉGIUM" PROGRAM

THE CONFERENCE PARTICIPATION WAS PARTLY SUBSIDISED BY THE TALENT SUPPORT COUNCIL OF EÖTVÖS LORÁND UNIVERSITY, BUDAPEST