

Precise Timing Measurement for the CMS Upgrade & Beyond

V. Sola

Università di Torino and INFN

TOWARDS 4D TRACKING

The search for new physics pushes forward the high-luminosity and high-energy frontiers

 \Rightarrow The R&D for the detectors in such environment already started

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments

Timing can be available at different levels of the event reconstruction, in increasing order of complexity:

 $^{\otimes}$ Timing in the event reconstruction \rightarrow Timing Layers This is the easiest implementation, a layer ONLY for timing

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments

Timing can be available at different levels of the event reconstruction, in increasing order of complexity:

- $^{\otimes}$ Timing in the event reconstruction \rightarrow Timing Layers This is the easiest implementation, a layer ONLY for timing
- Solution Stress Str

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments

Timing can be available at different levels of the event reconstruction, in increasing order of complexity:

- Solution \rightarrow Timing in the event reconstruction \rightarrow Timing Layers This is the easiest implementation, a layer ONLY for timing
- Solution Stress Str
- Solution State State
 Solution S

Very high rate represents an additional step in complication, very different read-out chip and data output organization

The inclusion of track-timing in the event information has the capability of changing radically how we design experiments

Timing can be available at different levels of the event reconstruction, in increasing order of complexity:

- Solution \rightarrow Timing in the event reconstruction \rightarrow Timing Layers This is the easiest implementation, a layer ONLY for timing
- $^{\otimes}$ Timing at each point along the track \rightarrow 4D Tracking Tracking - Timing

The ultimate goal

Solution Strain Strain

Very high rate represents an additional step in complication, very different read-out chip and data output organization

HIGH RATE 4D TRACKING

7

A TIME-TAGGING DETECTOR

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning

A TIME-TAGGING DETECTOR

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning

\Rightarrow Strong interplay between sensor and electronics

FAST TIMING - THE INGREDIENTS

For a planar detector geometry $\sigma_t^2 = \sigma_{Current}^2 + \sigma_{Jitter}^2 + \sigma_{Time Walk}^2 + \sigma_{TDC}^2$ with a saturated velocity, the σ_t main contributors are **current fluctuations** and **jitter**

FAST TIMING - THE INGREDIENTS

For a planar detector geometry $\sigma_t^2 = \sigma_{Current}^2 + \sigma_{Jitter}^2 + \sigma_{Time Walk}^2 + \sigma_{TDC}^2$ with a saturated velocity, the σ_t main contributors are **current fluctuations** and **jitter**

Current fluctuations are due to the physics of MIP ionization

(Landau fluctuations)

Improves with thin sensorsDoes not depend on the gain

For 50 μ m thick sensors contribute ~ 30 ps

 \rightarrow Physical limit to time resolution

FAST TIMING - THE INGREDIENTS

For a planar detector geometry $\sigma_t^2 = \sigma_{Current}^2 + \sigma_{Jitter}^2 + \sigma_{Time Walk}^2 + \sigma_{TDC}^2$ with a saturated velocity, the σ_t main contributors are **current fluctuations** and **jitter**

Current fluctuations are due to the physics of MIP ionization

Proton MIP 4.5e-0 Thickness: 50µm Gain: 15 4e-05 Landau 3.5e-05 Fluctuations 3 - 30 fC 3e-05 Current (A) Most probable Signal 8 fC 2e-05 1.5e-05 1e-05 5e-06 1.2 ns 5e-09 5.2e-09 5.4e-09 5.6e-09 5.8e-09 6e-09 6.2e-09 6.4e-09 time (s)

(Landau fluctuations)

Improves with thin sensorsDoes not depend on the gain

For 50 μ m thick sensors contribute ~ 30 ps

 \rightarrow Physical limit to time resolution

For every good electronics $\begin{aligned}
Jitter: \text{ Not so good electronics} \\
Current term ~ 30 \text{ ps} \\
\hline
Current term ~ 30 \text{ ps} \\
\hline
Jitter: \text{ Very good electronics} \\
\hline
10 (5 \text{ fC}) & 20 (10 \text{ fC}) & \text{Gain (or charge)} \\
\sigma_{jitter} &= -\frac{N}{(dV/dt)_{V_{i}}} &= \frac{t_{rise}}{S/N}
\end{aligned}$

Jitter is driven by the electronics

SILICON SENSORS FOR FAST TIMING

Must have:

- Large dV/dt to minimize jitter
- > Segmentation
- Radiation hard

The game changer is the introduction by CNM of the LGAD^[*] idea:

- > Add a thin layer of doping to produce low controlled multiplication
- > This idea retains almost (segmentation) the benefit of standard silicon sensors
- \rightarrow UFSD^[**]: LGAD sensors, optimized for timing

[*] LGAD = Low-Gain Avalanche Diodes

^[**] UFSD = Ultra-Fast Silicon Detectors

UFSD TIME RESOLUTION

\Rightarrow UFSD achieved 30 ps time resolution, in line with our target

Comparison WF2 Simulation - Data Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

UFSD RADIATION TOLERANCE

UFSD suffer for gain reduction due to irradiation FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

UFSD RADIATION TOLERANCE

UFSD suffer for gain reduction due to irradiation FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

UFSD IN PPS

The CMS TOTEM Precision Proton Spectrometer (CT-PPS) aims at measuring the surviving scattered protons on both sides of CMS in standard LHC running conditions \rightarrow 1 plane of UFSD has been installed on both sides of CT-PPS in 2017

> Aim: disentangle primary vertex from pile-up

First UFSD installation in High Energy Physics

 $2 \mathrm{\,mm}$

A HERMETIC MIP TIMING DETECTOR FOR CMS

Simulation of a VBF H $\rightarrow \tau \tau$ in 200 pile-up pp collisions

- Must reduce pile up to level of the current CMS detector, to preserve data quality
- > Slice beam spot into consecutive 30-50 ps time exposures
 - \rightarrow Results in ~ 40 pile-up events per slice

MIP TIMING DETECTOR IN A GLANCE

ETL SENSOR REQUIREMENTS

- Solution Ultra-Fast Silicon Detectors (UFSD)
 - ▷ Highly doped p⁺ region just below the n-type implant
 - ▷ Low and controlled gain (10-30)
 - Good radiation tolerance
- Specifications
 - \triangleright Thin detectors (~50 μ m)
 - \rightarrow maximize signal slew rate
 - ▷ Small pixel size (1.3 x 1.3 mm²)
 - \rightarrow minimize capacitance
 - Optimize no-gain region between pixels

 maximize fill factor while maintaining pad isolation to maximize efficiency

ETL = Endcap Timing Layer

First large scale application of the UFSD in a high energy physics experiment

ETL SENSOR PERFORMANCES

- Solution: 30 ps achieved
- 🕸 120 GeV proton beam test at FNAL
 - Signal uniformity of sensors: 2% spread
 - ▷ Efficiency: 100%
 - ▷ Fill factor with 50 um no-gain distance: 90%

80

♦ jitter +20C

○ Jitter -20C

Res(20) +20C

Res(20) -20C

🔺 Res(20) 0C

△ Jitter OC

Timing Resolution HPK 50C

60

50

ETL RADIATION TOLERANCE

Solution < 40 ps achieved with up to $1.5 \times 10^{15} n_{eq}/cm^2$

- Increasing bias voltage to compensate for loss of gain from radiation damage
- [∞] Leakage current mitigated by cooling to -30°C

ETL READ-OUT ELECTRONICS

- \odot Design goal: 50 ps per hit \rightarrow 35 ps per track
- ETROC process based on TSMC 65 nm technology
- ToT used for time-walk corrections
- [™] Trigger rate up to 1 MHz
- [∞] Power consumption < 215 mW/cm²

ETROC schematic

Simplified schematic and layout of ETROC preamplifier

ELECTRONICS TOWARDS 4D TRACKING

Let's consider a pixel size ~ $100 \times 100 \ \mu m^2$

> Can we produce a sensor with small pixel and high fill factor?

- > Can we fit the electronics?
 - \rightarrow the preamplifier does not scale with the technological node
 - \rightarrow memory and TDC do

Example: TDC evolution

 \Rightarrow HR 4D Tracking requires either 65 nm or 28 nm electronics

READ-OUT & ALGORITHMS

If we succeed in having the sensors and the read-out chip, still lot of work needed

Taking advantage of HR 4D Tracking requires a very complex back end:

- > Very fast data transfer
- Real time tracking requires the development of specific 4D tracking
 sometimes called *retina*, being pursued by several groups

SUMMARY

A new generation of detectors able to measure both time and space with high accuracy are being developed

▷ UFSD are the proposed technology for CMS ETL High-Luminosity upgrades

Still R&D ongoing to exploit the full 4D capabilities

ETL of CMS will represent the first large scale attainment of a Silicon based detector for 4D tracking

> There is no 'one technology fits all'

depending on segmentation, precision, radiation levels and other factors the best solution changes

⇒ The path towards new detectors for the forthcoming high-density, high-energy collider era has started

We kindly acknowledge the following funding agencies, collaborations:

- Horizon 2020, grant UFSD669529
- ▷ Horizon 2020, grant INFRAIA
- ▷ AIDA 2020, grant 654168
- INFN, Gruppo V
- Ministero degli Affari Esteri, Italy, MAE, "Progetti di Grande Rilevanza Scientifica"
- U.S. Department of Energy, grant DE-SC0010107
- ⊳ RD50, CERN

BACKUP

POSSIBLE TECHNOLOGIES FOR 4D TRACKING

.

 Silicon Sensors GigaTracker NA62: σ_t ~ 150 ps Silicon detector + SiGe HBT amplifier^[1]: σ_t ~ 105 ps Fine segmentation easy Known technology Small signal Intrinsic resolution: σ_t ~ 100 ps 	 Diamond Detectors ▷ TOTEM Diamonds for CT-PPS ToF: σ_t ~ 100 ps + No leakage current + Radiation hard + Small capacitance, high mobility - Small signal ◆ Intrinsic resolution: σ_t ~ 100 ps
 APD (Avalanche PhotoDiodes) + Thin sensors (30-50 μm) + High signal (gain 50-500) - Sensitive to shot noise - Radiation resistance up to 10¹⁴ n_{eq}/cm² - Fine segmentation difficult ◆ Intrinsic resolution: σ_t ~ 30 ps 	 LGAD (Low-Gain Avalanche Diodes) - UFSD + Thin sensors (50 μm) + Medium-high signal (gain 10-20) + Shot noise under control + Radiation resistance up to ~ 310¹⁵ n/cm² - Possible fine segmentation (TBD) ◆ Intrinsic resolution: σ_t ~ 30 ps

^[1] M. Benoit et al., arXiv:1511.04231

TIMING IN THE EVENT RECONSTRUCTION

➡ Timing allows distinguishing overlapping events by means of an extra dimension

ATLAS and CMS Timing Layer concept

TIMING AT EACH POINT ALONG THE TRACK

- Massive simplification of pattern recognition, new tracking algorithms will be faster even in very dense environments
- Set only time compatible points 333ps 143ps **/**-13ps -20ps 300ps 110ps pixel -53ps/// 77ps 266ps Timing -87ps 233ps 43ps 1 cm -120ps 200ps \ 10ps LHCb VeLo Upgrade Protons Protons z-vertex 2035

TIMING AT THE TRIGGER LEVEL

Timing at the trigger decision allows reducing the trigger rate rejecting topologies that look similar

POSSIBLE GEOMETRIES

Signal shape is determined by Ramo's theorem

$$i \propto q \cdot v_{drift} \cdot E_w$$

Drift velocity, v_{drift} , and weighting field, E_{w} , need to be as uniform as possible Basic rule: parallel plate geometry

⇒ strip implant ~ strip pitch >> thickness

SHOT NOISE

ELECTRONICS - THE PRE-AMP CHOICHE

DOPING STRATEGY MOTIVATION

From RD50 Collaboration

Gallium

From literature, Gallium has a lower possibility to become interstitial

Carbon

Interstitial defects filled with Carbon instead of with Boron and Gallium

50µm UFSD2 PRODUCTION

Wafer #	Dopant	Gain dose	Carbon	Diffusion
1	Boron	0.98		Low
2	Boron	1.00		Low
3	Boron	1.00		HIGH
4	Boron	1.00	Low	HIGH
5	Boron	1.00	HIGH	HIGH
6	Boron	1.02	Low	HIGH
7	Boron	1.02	HIGH	HIGH
8	Boron	1.02		HIGH
9	Boron	1.02		HIGH
10	Boron	1.04		HIGH
11	Gallium	1.00		Low
14	Gallium	1.04		Low
15	Gallium	1.04	Low	Low
16	Gallium	1.04	HIGH	Low
18	Gallium	1.08		Low

Production:

- > 18 Silicon-on-Silicon wafers
- ➤ 4 different gain layer strategies:
 - Boron (Low & High diffusion)
 - Carbonated Boron (B High diffusion)
 - Gallium (Low diffusion)
 - Carbonated Gallium (Ga Low diffusion)
- > 4 different doping concentration for Boron implants
- 2 different diffusion temperatures for Boron
- ➤ 3 different doping concentration for Gallium implants
- > 2 carbon concentration (Low & High)

Carbonated Boron, Gallium & Carbonated Gallium implants to investigate radiation hardness

Gallium implant required a complete new simulation, because of implantation energy and diffusion very different from Boron

IV CURVES - WAFER UNIFORMITY

IV CURVES - TEMPERATURE DEPENDENCE

- Leakage current scales with the temperature (expected a factor 2 for every 7°C)
- ▷ Expected a gain inversely proportional to the temperature
- Internal Breakdown shift towards lower voltage due to the temperature decreasing

 $\Delta T = 48^{\circ}C \rightarrow Current(24^{\circ}C) / Current(-24^{\circ}C) \sim 100 \rightarrow Result expected$

CV CURVES - ALL WAFERS

- ▷ The knee at ~30V indicates the the gain layer depletion voltage
- ▷ Boron & Gallium doped sensors show slightly different behavior due to different gain layer width
- ▷ Low Carbon: similar depletion voltage as in the case without Carbon
- ▶ High Carbon: depletion voltage occurs much earlier that in the case without Carbon

IV Measurements on Irradiated Sensors

NEW TRENDS IN HEP - ODESSA 15.05.2019

CV Measurements on Irradiated Sensors

Reminder: fluence doubles at each step

-NEW

-2e14

-4e14

-8e14

-1.5e15

—3e15

---6e15

-NEW

-2e14

-4e14

—8e14

—1.5e5

-3e15

—6e15

-40

-40

The knee voltage value is proportional to the gain layer doping

Carbonated

TIME RESOLUTION WITH CARBON

FBK UFSD2 B+C:

> Constant time resolution up to 1.5E15 n_{eq}/cm² increasing V_{bias} to 650

> Constant V_{bias} up to 1.5E15 n_{eq}/cm^2 with 30% degradation in time resolution

 \rightarrow Current R&D focuses on reducing the need to increase the bias voltage

GAIN MEASUREMENT

GAIN = (Signal area LGAD)/(Signal area PiN)

TCT Setup from Particulars Pico-second IR laser at 1064 nm Laser spot diameter ~ 50 μm Cividec Broadband Amplifier (40dB) Oscilloscope Lecroy 640Zi Room temperature

V. Sola

NEW TRENDS IN HEP - ODESSA 15.05.2019

FBK UFSD3 Production

Wafer #	UFSD2	Dose Pgain	Carbon	Diffusion
1	W1	0.98		L
2	W1-Epi	0.96		L
3		0.96	Α	L
4	Epi	0.96	Α	L
5		0.98	Α	L
6		0.96	В	L
7		0.98	В	L
8		0.98	В	L
9		0.98	С	L
10		1.00	С	L
11		1.00	D	L
12	W8	1.02		Н
13	W8-Epi	1.00		Н
14	W6	1.02	Α	Н
15	W6-Epi	1.00	Α	Н
16		1.02	В	Н
17		1.02	В	Н
18		1.04	В	Н
19		1.02	С	Н
20		1.04	С	Н

- > 6" wafers processed 55 μ m thick active substrate
- > 16 Float-Zone, 4 Epitaxial substrates
- > 2 strategies of gain implant diffusion
- ➣ 5 splits of gain layer doses
- > 4 splits Carbon co-implantation
- > 4 inter-pad termination strategies

Strategy	Nominal width [µm]
Aggressive	15 μm
Medium	20 µm
Safe	30 µm
Super Safe	40 µm
UFSD2	70 µm

45

FILL FACTOR

Actual situation: 50 μ m \rightarrow 93% (for 1.7 mm² pad)

Future R&D

RSD (INFN+FBK) project, no segmentation in the active area \rightarrow **100% fill** factor by definition FBK + RD50 project, taking example from SiPM, using a trench design \rightarrow **about 100% fill factor**

HD-LGAD

FUTURE R&D

TOFFEE

The LVDS output is meant for time digitization with HPTDC (rising and falling edges). A Strecher is required.

TOFFEE is the first version of a multipurpose 8-channel chip with Time-over-Threshold time-walk correction

 \rightarrow At beam test, it achieves a resolution of 55 ps, including the digital part

Bump-bonded NA62 TDCpix ROC to FBK-UFSD sensor NA62 ROC: 40x45 pads, each 300x300 µm2 (1800 pads)

- ➤ More than 99% of pads working
- Same voltage behavior as single pad → breakdown above 280 V

\Rightarrow First example of 4D tracking!

ETL LAYOUT

Underlying events in high energy pp collisions

Scaling of the central charged multiplicity for the SIBYLL, QGSJET, and EPOS models compared to collider data for NSD events