

kvi - center for advanced radiation technology

The PANDA experiment at FAIR

M. Kavatsyuk

KVI-CART, University of Groningen

for the PANDA collaboration

Quantum ChromoDynamics (QCD)

What is the difference between QED and QCD?

$$\mathcal{L}_{\text{QED}} = \bar{\psi}(x) \left[i\gamma_{\mu} D^{\mu} - m \right] \psi(x) - \frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x)$$
$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(i\gamma_{\mu} D^{\mu} - m \right) \psi - \frac{1}{2} \operatorname{tr} \left\{ G_{\mu\nu} G^{\mu\nu} \right\}$$

Gluons (QCD gauge bosons) carry colour charge

Non-linear theory

QCD – well tested at high energies (perturbative QCD)

 At low energies – many aspects are not understood (strongly-coupled theory: strong QCD)

Strong-interaction coupling constant

Quantum ChromoDynamics (QCD)

 At low energies – many aspects are not understood (strongly-coupled theory: strong QCD)

The Origin of Hadron Mass

- Elementary particles get their mass due to the ... **Higgs mechanism**
- ... but protons and neutrons are much heavier (M_{quarks} ~ 1% of M_p) than their valence guarks constituents! Why?

Most of the mass of light hadrons is generated dynamically by the strong interaction

How can we approach this puzzle?

Quantum ChromoDynamics (QCD)

Shedding light on the hadronmass puzzle by investigating:

- Systems with different ratio of dynamically generated mass to the Higgs mass:
 - Charmonium states
 - Glueballs (M_{Higgs} = 0)
 - strange hadrons (m_s ~ energy scale at which quarks are confined into hadrons)
- Distribution and motion of quarks in the nucleon.

Strong-interaction coupling constant

Quantum ChromoDynamics (QCD)

Shedding light on the hadronmass puzzle by investigating:

- Systems with different ratio of dynamically generated mass to the Higgs mass:
 - Charmonium states
 - Glueballs (M_{Higgs} = 0)
 - strange hadrons (m_s ~ energy scale at which quarks are confined into hadrons)
- Distribution and motion of quarks in the nucleon.
 Antiprotons – the most versatile probe...

Strong-interaction coupling constant

AntiProton Annihilation at DArmstadt (PANDA)

7

university of groningen

kvi - center for advanced

PANDA at FAIR

High resolution mode:

- e⁻ cooling: p<8.9 GeV/c
- 10¹⁰ antiprotons stored
- Luminosity up to 2x10³¹ cm⁻² s⁻¹
- $dp/p = 4x10^{-5}$

Dedicated talk by Mustafa Schmidt on Monday

High intensity mode:

- Stochastic cooling: p<15 GeV/c
- 10¹¹ antiprotons stored

(10¹⁰ phase 1+2)

- Luminosity up to 2x10³² cm⁻² s⁻¹
- dp/p = $2x10^{-4}$

Antiprotons – a versatile probe!

Larger mass coverage:

- From light, strange, to charmed hadrons, mesons
- From quark/gluons hadronic degrees of freedom

High hadronic production rates:

- charm+strange baryons production
 - \rightarrow discovery by statistics!
- gluon-rich production
 - \rightarrow potential for new exotics

Direct formation of full J^{PC} spectrum allowed for $q\overline{q}$ systems

Challenge for PANDA

11

university of groningen

kvi - center for advanced radiation technology

Challenge for PANDA

Cross section for proton-antiproton collisions

- 4π acceptance
- high rate capability (average interaction rate 20 MHz)
- excellent tracking capabilities, momentum resolution 1%
- Vertex reconstruction for D, K_s , hyperons

- good PID (e, μ , π , K, p) \rightarrow Čerenkov, ToF, dE/dx
- y detection 10 MeV- 15 GeV \rightarrow PWO crystal calorimeter
- no hardware trigger, intelligent online event selection

Dedicated talk by Mustafa Schmidt on Monday 13

PANDA physics

PANDA physics

Charmonium

radiation technology

Insight into the strong interactions at long-distance scales

Exotic matter

Lattice QCD predicts exotic matter (hybrids, glueballs) which have spinsymmetries forbidden for mesons

Can be unambiguously identified (no mixing with conventional states)

Hybrid

- Glueball

 $M_{Higgs} = 0$

Exotic matter

Lattice QCD predicts exotic matter (hybrids, glueballs) which have spinsymmetries forbidden for mesons

Can be unambiguously identified (no mixing with conventional states)

In proton-antiproton annihilation all possible conventional and high-spin states are directly formed!

Antiprotons – a versatile probe!

Revealing Nature of X(3872)?

Line-Shape Measurement

radiation technology

Momentum spread of the cooled antiproton beams: $< 4 \cdot 10^{-5}$

Line shape measurement with CM energy resolution down to 50 keV

Line-Shape scan of X(3872)

 $\bar{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$

PANDA will be able to provide crucial information on X(3872)!

PANDA physics

 Hyperons – a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?

 Hyperons – a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?

There are multiple attempts to describe $p\overline{p} \rightarrow Y\overline{Y}$ process in:

- quark-gluon picture,
- hadronic meson-exchange picture,
- or both?..

Which picture represents nature the best?

 Hyperons – a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?

Missing resonances:

What do we know about excited states of multistrange baryons?

Ξ should have as many excited states as N* and Δ together!

Decuple	Decuplet members			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\Xi(1530)$ $\Xi(?)$ $\Xi(?)$ $\Xi(?)$ $\Xi(?)$ $\Xi(?)$ $\Xi(?)$	$\Omega(1672) \ \Omega(?) \ \Omega(?)$		
$11/2^+ (56,4_4^+) \ 3/2 \Delta(2420) \Sigma(?)$	$\Xi(?)$	$\Omega(?)$		

J^P	$(D, L_N^P) S$ O	ctet members	Singlets
$1/2^{+}$	$(56,0^+_0) \ 1/2 N(939) \ \Lambda(11)$	16) $\Sigma(1193)$ $\Xi(1318)$)
$1/2^{+}$	$(56,0^+_2) \ 1/2 N(1440) \Lambda(160)$	500) $\Sigma(1660)$ $\Xi(1690)$)
$1/2^{-}$	$(70,1_1^-) \ 1/2 N(1535) \Lambda(16)$	570) $\Sigma(1620)$ $\Xi(?)$	$\Lambda(1405)$
		$\Sigma(1560)^{\dagger}$	
$3/2^{-}$	$(70,1_1^-) \ 1/2 N(1520) \Lambda(160)$	(590) $\Sigma(1670)$ $\Xi(1820)$) $\Lambda(1520)$
$1/2^{-}$	$(70,1_1^-) \ 3/2 N(1650) \Lambda(18)$	800) $\Sigma(1750)$ $\Xi(?)$	
		$\Sigma(1620)^{\dagger}$	
$3/2^{-}$	$(70,1_1^-) \ 3/2 N(1700) \Lambda(?)$	$\Sigma(1940)^{\dagger} \Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1}) \ 3/2 N(1675) \Lambda(18)$	30) $\Sigma(1775)$ $\Xi(1950)$)
$1/2^{+}$	$(70,0^+_2) \ 1/2 N(1710) \Lambda(18)$	310) $\Sigma(1880)$ $\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^+_2) \ 1/2 N(1720) \Lambda(18)$	(390) $\Sigma(?)$ $\Xi(?)$	
$5/2^{+}$	$(56,2^+_2) \ 1/2 N(1680) \Lambda(18)$	$\Sigma(1915) \Xi(2030)$)
$7/2^{-}$	$(70,3_3^-) \ 1/2 N(2190) \Lambda(?)$	$\Sigma(?)$ $\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3_3^-) \ 3/2 N(2250) \Lambda(?)$	$\Sigma(?)$ $\Xi(?)$	
$9/2^{+}$	$(56,4^+_4) \ 1/2 N(2220) \Lambda(23)$	$(50) \Sigma(?) \qquad \Xi(?)$	J

 Hyperons – a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?

Missing resonances:

What do we know about excited states of multistrange baryons?

MC studies for PANDA: $\overline{\Xi}^{+}\Lambda K^{-}$ and $\Xi^{-}\overline{\Lambda}K^{+}$

High discovery potential of PANDA

[Jennifer Pütz]

- Hyperons a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?
- In hyperon decays spin is easily traceable -

improve the existing limits on CP violation

- Hyperons a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?
- In hyperon decays spin is easily traceable improve the existing limits on CP violation
- Hyperon in nuclei (hypernuclei) additional degree of freedom, crucial to understand e.g. neutron stars

- Hyperons a new access to the nucleon puzzle (strange quark light enough to be able to relate knowledge on hyperon to nucleon); which degrees of freedom are relevant?
- In hyperon decays spin is easily traceable –

improve the existing limits on CP violation

 Hyperon in nuclei (hypernuclei) – additional degree of freedom, crucial to understand e.g. neutron stars

$p_{\overline{p}} \; ({ m GeV}/c)$	Reaction	$\sigma~(\mu { m b})$	Eff $(\%)$	Decay	Rate at $10^{31} \text{cm}^{-2} \text{s}^{-1}$
1.64	$\overline{p}p o \Lambda\Lambda$	64	14	$\Lambda \to p\pi^-$	$39 \ s^{-1}$
4	$\overline{p}p \to \overline{\Xi}^+ \Xi^-$	≈ 2	20	$\Xi^-\to\Lambda\pi^-$	$2 \ s^{-1}$
12	$\overline{p}p o \overline{\Omega}^+ \Omega^-$	$\approx 0.002^*$	≈ 30	$\Omega \to \Lambda K^-$	$\approx 4 h^{-1}$
12	$\overline{p}p \to \overline{\Lambda}_c^- \Lambda_c^+$	$\approx 0.1^*$	≈ 30	$\Lambda_c \to \Lambda \pi^+$	$\approx 2 d^{-1}$

PANDA – is a hyperon factory!

PANDA physics

Electromagnetic Form Factors

radiation technology

PANDA physics

Collaboration

UniVPM Ancona U Basel **IHEP Beijing U** Bochum U Bonn U Brescia IFIN-HH Bucharest AGH UST Cracow **IEJ PAN Cracow** JU Cracow U Cracow FAIR Darmstadt GSI Darmstadt JINR Dubna U Edinburgh U Erlangen NWU Evanston U & INFN Ferrara

FIAS Frankfurt U Frankfurt LNF-INFN Frascati U & INFN Genova U Gießen U Glasgow BITS Pilani KKBGC, Goa **KVI** Groningen Sadar Patel U, Gujart Gauhati U, Guwahati USTC Hefei **URZ** Heidelberg FH Iserlohn FZ Jülich IMP Lanzhou **INFN** Legnaro U Lund

HI Mainz

U Mainz INP Minsk ITEP Moscow MPEI Moscow BARC Mumbai U Münster Nankai U **BINP Novosibirsk** Novosibirsk State U IPN Orsay U Wisconsin, Oshkosh U & INFN Pavia Charles U, Prague Czech TU, Prague **IHEP Protvino** Irfu Saclay U of Sidney

PNPI St. Petersburg West Bohemian U, Pilzen **KTH Stockholm** U Stockholm SUT, Nakhon Ratchasima SVNIT Surat-Gujarat S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino U & INFN Trieste U Uppsala U Valencia SMI Vienna U Visva-Bharati SINS Warsaw

more than 460 physicists from from 75 institutions in 19 countries

Thank you for your attention!

Planning

Dedicated talk by Mustafa Schmidt on Monday 34

PANDA phases

