

"The neutrino mass experiment KATRIN"

Florian Fränkle for the KATRIN collaboration

Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT)

Outline

- Neutrino mass and β-decay
- KATRIN experiment
- First tritium measurements
- KATRIN backgrounds
- Summary & Outlook

Neutrino masses

- Neutrino flavour eigenstates are related to neutrino mass eigenstates by the lepton mixing matrix (PMNS)
- Neutrino oscillations are sensitive to the differences between the squares of neutrino masses
- Two mass ordering scenarios possible
- The value of the lightest neutrino mass is unknown

$$\begin{bmatrix} v_e \\ v_\mu \\ v_\tau \end{bmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix}$$

Neutrino mass and single β -decay

- $\blacksquare \beta \text{-decay: } n \rightarrow p + e^- + \overline{\nu_e}$
- Neutrino mass influences energy spectrum of β-decay electrons
- Neutrino mass determination via precise measurement of the spectral shape close to the endpoint
- Model independent method

Fermi theory of β -decay:

$$\frac{\mathrm{dN}}{\mathrm{dE}} = \mathbf{C} \cdot \mathbf{F}(\mathbf{E}, \mathbf{Z}) \cdot \mathbf{p}(\mathbf{E} + \mathbf{m}_{\mathbf{e}}) \cdot (\mathbf{E}_{0} - \mathbf{E}) \cdot \sqrt{(\mathbf{E}_{0} - \mathbf{E})^{2} - \mathbf{m}_{v}^{2}}$$
$$m_{\nu_{e}}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

4

Neutrino mass measurement

- KATRIN will measure the integrated
 β-spectrum close to the T₂ endpoint E₀
- The influence of m_v is most pronounced a few eV below E_0
- Optimized measurement time distribution to increase sensitivity
- Background obscures region of spectrum most sensitive to neutrino mass
- Design goal is a background rate of 0.01 cps for a sensitivity of 0.2 eV/c²

The KATRIN experiment

- **KA**rlsruhe **TRI**tium **N**eutrino experiment
- Goal: Measure neutrino mass with a sensitivity of 0.2 eV/c² (90% C.L.)

Windowless Gaseous Tritium Source

Purpose: delivery of 10¹¹ β-decay electrons per second

- Stability of T₂ density profile of 10⁻³ (function of T₂ injection rate, purity, beamtube temperature stability and homogeneity, pump rate)
- Complex cryostat, 16 m length, 27 t weight, > 800 sensors and valves
- High isotopic purity (> 95%)
- Tritium loop processes 40 g T₂ / day (same scale as ITER)

Windowless Gaseous Tritium Source

- Successful commissioning of magnet system at maximum field (3.6 T)
- Test of two phase beam tube cooling system: temperature stability exceeds requirements by one order of magnitude!

MAC-E filter

Magnetic Adiabatic Collimation combined with an Electrostatic Filter

Technique used by Mainz and Troitsk neutrino mass experiments

10 May 17th, 2019

Florian Fränkle, "The neutrino mass experiment KATRIN" New Trends in High-Energy Physics 2019, Одеса, Україна Institute for Nuclear Physics (IKP)

main spectrometer

- **Purpose:** energy analysis of β -decay electrons ($\Delta E = 0.93 \text{ eV}$ @ 18.6 keV)
- Spectrometer mass 200 t, volume 1240 m³, inner surface 689.6 m²
- Pressure ~ 10⁻¹¹ mbar
- Inner wire electrode system for fine-tuning of retarding potential
- Voltage monitoring precision
 3 ppm @ -18.6 kV
- Variable voltage to scan E₀ region

KATRIN Inauguration / First Tritium

- First tritium measurement campaign and official inauguration in May/June 2018
- Successful commissioning of system with tritium (< 1% nominal activity)
- Investigation of β-spectrum for systematic effects and test analysis strategies

"KATRIN neutrino mass 1 (KNM1)" measurements

- Ongoing measurement campaign since beginning of March 2019
- Step wise increase of tritium source activity (0 -> 100 %)
- Investigation of systematic effects (electron energy loss, source plasma potential)

β-spectrum scans

Background overview

Various processes contribute to the KATRIN background

Background overview

Most background processes are efficiently suppressed, but remaining background is about 50 times larger than design value

15 May 17th, 2019

Institute for Nuclear Physics (IKP)

Rydberg model:

- Rydberg atoms created in the decay of ²¹⁰Po and accompanying processes, enter the spectrometer volume where they are ionized by thermal radiation, thus creating low-energy electrons
- This process creates about the same number of electrons for each volume element of the main spectrometer

Rydberg background reduction methods

- Reducing the volume of the magnetic flux tube mapped on the detector reduces the background
- Increasing the magnetic field in the analyzing plane broadens the energy resolution
- Shifting the analyzing plane downstream increases inhomogeneities of the retarding potential

Summary and outlook

Summary:

- KATRIN aims to measure the neutrino mass with 0.2 eV/c² sensitivity (90% C.L.)
- Official inauguration of KATRIN on June 11th, 2018
- First neutrino mass measurement campaign started in March 2019

Outlook:

- Results of the first neutrino mass measurements are planned to be presented at the TAUP conference in September 2019
- Accumulate 3 years of measurement time to reach full KATRIN sensitivity
- Search for keV sterile neutrinos (TRISTAN)

KATRIN collaboration

Florian Fränkle, "The neutrino mass experiment KATRIN" New Trends in High-Energy Physics 2019, Одеса, Україна Institute for Nuclear Physics (IKP)

Backup

KATRIN background & sensitivity

KATRIN sensitivity limited by backgrounds