ANTARES and KM3NeT:

Latest results of the neutrino telescopes in the Mediterranean

Matteo Sanguineti

Università di Genova, INFN Genova on behalf of ANTARES and KM3NeT collaborations

17/5/2019

Matteo Sanguineti

ANTARES and KM3NeT: Latest results of the neutrino telescopes in the Mediterranean

- Neutrino astronomy
- ANTARES and KM3NeT detectors
- Detector performances
- ANTARES latest results
- KM3NeT status and expected results
- Conclusions

Neutrino astrophysics

Charged Cosmic Rays

- Copiously produced
- Directions scrambled by magnetic fields

High Energy Gamma Rays

- Produced both by hadronic and leptonic mechanisms
- ✗ Absorbed on dust and radiation

UltraHigh Energy Cosmic Rays
 ✓ Not strongly deflected by magnetic field
 ✗ Limited by GZK cut-off

Neutrinos ✔ Not affected by magnetic fields and radiation, not absorbed by matter ★ Very low interaction cross section

17/5/2019

Matteo Sanguineti

Neutrino detection principle

An array of PMT detects the Cherenkov light induced by the particles produced in the neutrino interaction

The measurement of position and time of the detected photon allows the reconstruction of the direction and the energy of the event

The ANTARES detector

Matteo Sanguineti

17/5/2019

stituto Nazionale di Fisica Nucleare

NEN

KM3NeT

The KM3NeT detector

Nazionale di Fisica Nuclear

ANTARES & KM3NeT technologies

Advantage of KM3NeT
1) Segmented photocathode, unambiguous recognition of coincident hits
2) Directional sensitivity
3) 4π solid angle coverage by each DOM
4) Reduced cost and risk of failure thanks to a simple mechanical structure of the detection unit

Matteo Sanguineti

KM3NeT ARCA & ORCA

stituto Nazionale di Fisica Nucleare

ARCA Astroparticle Research with Cosmics in the Abyss Line distance = 90 mVertical DOM dist. = 36 m Depth = 3500 m

KM3NeT

17/5/2019

ORCA

Depth = 2475 m

ANTARES & KM3NeT collaborations

Matteo Sanguineti

ANTARES vs KM3NeT-ARCA performances

KM3NeT-ORCA performance

- Muon energy accuracy: $\Delta(\log 10 \text{ E})=0.25-0.3 @ \text{ E} > 10 \text{ TeV}$
- Shower energy accuracy: 5-10% at E > some 10 TeV

Matteo Sanguineti

Astrophysical Neutrinos: Search methods

17/5/2019

Istituto Nazionale di Fisica Nucleare

Latest results from ANTARES

- Diffuse flux search
- Point-source search
- Galactic plane
- Multi-messenger strategies
 - Gravitational waves
 - Fast Radio Burst (FRB)
 - Bright Gamma Ray Burst (GRB)
- Moon shadow

17/5/2019

13

KM3Ne¹

Diffuse flux search

Reconstructed events after quality cuts:

	Bkg expectation	Signal expectation	N events measured
Tracks	13.5+/-4	3-3.5	19
Showers	10.5+/-4	3-3.5	14

Results compatible with IceCube diffuse flux:

• 1.6 σ excess

•Null cosmic neutrino contribution rejected at 85% CL

Astrophys. J. Lett. 853, L7 (2018)

KM3NeT

stituto Nazionale di Fisica Nucleare

Point-source flux search

17/5/2019

Most of the galactic gamma ray sources are in the southern sky

Best pointing from a N-Hemisphere telescope

Searches:

- Full-sky
- Candidate list
- Galactic centre

Point-source flux search

stituto Nazionale di Fisica Nuclear

Galactic Plane search

"KRA Gamma model" has been introduced recently to explain the highenergy gamma ray diffuse Galactic emission.
 This model reproduces Fermi & Milagro data
 ApJ. Lett., 815:L25, 2015

stituto Nazionale di Fisica Nucleare

Phys. Rev. D96 (2017) 062001 ApJ 849 (2017) 67 Con excl

Combined U.L. (ANTARES+ IceCube) excludes the diffuse Galactic neutrino emission as the major cause of the "spectral anomaly" between the two hemispheres measured by IceCube

KM3Ne^T

ANTARES and IceCube

17/5/2019

17

Multi-messenger strategies

Istituto Nazionale di Fisica Nucleare

Gravitational Waves

Recent spotlight on the GW events detected by the Ligo-Virgo Collaboration:

- GW150914 (BBH merger)
- GW151226 (BBH merger)
- LVT151012 (candidate)
- GW170104 (BBH merger)
- GW170817 (NS merger)

Neutrino follow-up on all of them, joint searches with IceCube (and also Pierre Auger Observatory)

So far no coincidences with neutrino from the region of interest at 90% C.L.:

not so likely for BH-BH merging;

Matteo Sanguineti

17/5/2019

 the jet of the NS-NS event (GW170817) was not aligned to our Line of Sight to provide a visible neutrino signal → upper limit on the neutrino fluence from each events over the whole spectrum ApJL 850 L35 (2017)
 ANTARES and a few KM3NeT lines operational for Virgo/LIGO run 03 !

Fast Radio Bursts

Fast radio bursts

FRB	z _{DM}	T ₀ (UTC)	RA (°)	dec (°)	radio telescope
131104	0.59	18:03:59	101.04	-51.28	Parkes
140514	0.44	17:14:09	338.52	-12.31	Parkes
150215	0.55	20:41:41	274.36	-4.90	Parkes
150418	0.49	04:29:04	109.15	-19.01	Parkes
150807	0.59	17:53:55	340.10	-55.27	Parkes
151206	1.385	06:14:56	290.36	-4.13	Parkes
151230	0.76	17:03:26	145.21	-3.45	Parkes
160102	2.13	08:28:38	339.71	-30.18	Parkes
160317	0.70	08:30:58	118.45	-29.61	UTMOST
160410	0.18	08:16:54	130.35	6.08	UTMOST
160608	0.37	03:52:24	114.17	-40.78	UTMOST
170107	0.48	20:05:45	170.79	-5.02	ASKAP

KM3Ne¹

21

10

10⁸

Bright gamma ray burst

stituto Nazionale di Fisica Nucleare

Matteo Sanguineti

Moon shadow

17/5/2019

One possibility to measure the pointing accuracy is to analyse the shadow of the Moon, i.e. the deficit in the atmospheric muon flux in the direction of the Moon induced by absorption of cosmic rays.

23

Moon shadow significance 3.5 σ ; Angular resolution 0.73° ± 0.14° The position of the Moon shadow is consistent with **not shifted pointing**.

Latest results from KM3NeT

- Status and first detections
- KM3NeT-ARCA
 - Diffuse flux expected performance
 - Point-source expected performance
- KM3NeT-ORCA
 - Neutrino mass hierarchy sensitivity

KM3Ne¹

Status and first results

ARCA

17/5/2019

- 3 strings deployed Dec 2015 & May 2016
- 2 out of 3 operated, string #3 with short in power system, recovered
- Full restoration of sea-bed network
 ORCA
- Successful deployment & operation of first string (Sept 2017)
- Cable problem, replacement summer 2018, resumed operations

Matteo Sanguineti

DOM and DU assembly proceeding Deployment foreseen after repairs, consistent with schedule

KM3Ne¹

in

First results of KM3NeT

- Event = Coincident hits in 8+ PMTs from the same module, within 15 ns
- ARCA: 1269 hours , 2 strings
- ORCA: 320 hours , 1 string
- Correction for DOM dependent PMT efficiency applied

KM3Ne¹

Muon flux model from Phys. Rev. D 58 (1998) 054001

Deployment of a KM3NeT string... KM3NeT is becoming a reality !

Diffuse flux performance (KM3NeT-ARCA)

Expected 5o signifi-KM3NeT 6 cance on diffuse IC Ь flux in < 1year: Significance 5 Tracks per year: •6 signal •4 background Cascades per years: tracks cascades 16 signal combined •9 background v_{atm} conventional uncertainty v_{atm} prompt uncertainty KM3NeT and IceCube Astrophys. J. Lett. 853, L7 (2018) complementarity flux per flavour 1.2 10⁻⁸ (E/1 GeV)⁻² exp(-E/3 PeV) GeV⁻¹ sr⁻¹ s⁻¹ cm⁻² in their field of view and energy range 0 2 2.5 3 3.5 Observation time [years] 0.5 1.5

Nazionale di Fisica Nucleare

are

17/5/2019

3.5

KM3Ne^T

Point source performance (KM3NeT-ARCA)

stituto Nazionale di Fisica Nucleare

Disclaimer: We compare detector sensitivities, not discovery potential at a given time, IceCube will have ~10 years of data when KM3NeT will start operation

KM3NeT-ARCA significance for two of the most promising sources. Significant discovery potential for extragalactic sources, complementing IceCube field of view.

KM3NeT

Matteo Sanguineti

Neutrino Mass Hierarchy (KM3NeT-ORCA)

stituto Nazionale di Fisica Nucleare

Matteo Sanguineti

17/5/2019

29

Neutrino Mass Hierarchy (KM3NeT-ORCA)

Signature of the neutrino mass hierarchy \rightarrow energy-zenith distribution of atmospheric neutrinos

Measurement requires

- best possible resolution in energy and zenith
- separation v_e/v_µ
- detailed understanding of systematics

J.Phys. G43 (2016) 084001

Neutrino Mass Hierarchy (KM3NeT-ORCA)

Conclusions and prespectives

ANTARES

- Solid results from various searches of neutrino emission (point-like, diffuse, ...)
- Rich multi-messenger program
- Several combined analyses with IceCube

KM3NeT

- ARCA: Confirmation of IceCube flux in less than one year
- ORCA: Competitive with JUNO, indication of neutrino mass hierarchy in ~3 years

Conference Probing the Universe with Multimessanger Astronomy

28 September 2020 to 2 October 2020 Sestri Levante

