Study of the hard double-parton scattering with 4-lepton final states with the ATLAS detector

Phys. Lett. B 790 (2019) 595

Oleg Kuprash Albert-Ludwigs-Universität Freiburg

For the ATLAS Collaboration

New Trends in High-Energy Physics 12-18 May 2019, Odessa, Ukraine

Hard double-parton scattering

- Two disjoint hard-scattering subprocesses
- If assume factorization of double PDFs (neglecting spin-, flavor-, color correlations)
 - → Pocket formula (phenomenological):

$$\sigma_{DPS}^{AB} = \frac{k}{2} \frac{\sigma_{SPS}^{A} \sigma_{SPS}^{B}}{\sigma_{eff}}$$

- $\sigma_{SPS}^{A(B)}$ is the **inclusive** cross section of the **single**-parton scattering with the final state A (B)
- σ_{eff} is a universal parameter of the proton (under assumptions above):
 - Related to the transverse size of the interaction region
 - Independent of the partonic process
 - Independent of the phase space
- k is a symmetry factor
 - $\succ k = 1$ for identical A and B
 - \succ k = 2 if A ∩ B = Ø

Motivation

- Add-on to the "Measurements of fourlepton production in pp collisions at 8 TeV with the ATLAS detector", Phys.Lett. B753 (2016) 552-572:
 - Same event selection (originally driven by the H → ZZ → 4l measurement)
- Measure the hard double-parton scattering (DPS) contribution to the inclusive four-lepton event sample
- 1) DPS dominated by two $q\bar{q}$ initial states: test the possibility of parton density fluctuations that would lead to a large DPS contribution
- 2) Due to event selection requirements, the DPS M_{41} distribution peaks around the Higgs mass

Invariant four-lepton mass

- Definition of signal: four-leptons from resonant Z and H boson decays and continuum ZZ^(*) background
 - Produced via SPS or DPS mechanisms

A model suggesting large DPS contribution

arXiv 1501.04569

• M. W. Krasny and W. Placzek, The LHC excess of four-lepton events interpreted as Higgs-boson signal: Background from Double Drell-Yan process?, Acta Phys. Polon. B45 (2014) 71, arXiv: 1305.1769 [hep-ph]

• M. W. Krasny and W. Placzek, On the contribution of the double Drell-Yan process to WW and ZZ production at the LHC, Acta Phys. Polon. B47 (2016) 1045, arXiv: 1501.04569 [hep-ph]

• The upper limit on fDPS obtained in this analysis using kinematic distributions of four leptons allows qualitative testing of the model

Dataset and event selection

• 20.2 fb⁻¹, 8 TeV dataset and selection are the same as in Phys. Lett. B 753 (2016) 552

Lepton selection				
Muons:	$p_{\rm T} > 6 { m ~GeV}, \eta < 2.7$			
Electrons:	$p_{\rm T} > 7 \; {\rm GeV}, \eta < 2.5$			
Lepton pairing				
Leading pair:	SFOS lepton pair with			
	smallest $ m_Z - m_{\ell\ell} $			
Sub-leading pair:	The remaining SFOS			
	with the largest $m_{\ell\ell}$			
For both pairs:	$p_{\mathrm{T}}^{\ell^+\ell^-} > 2 \; \mathrm{GeV}$			
Event selection				
Lepton $p_{\mathrm{T}}^{\ell_1,\ell_2,\ell_3}$:	> 20, 15, 10(8 if µ) GeV			
Mass requirements:	$50 < m_{12} < 120 \text{ GeV}$			
	$12 < m_{34} < 120 \text{ GeV}$			
Lepton separation:	$\Delta R(\ell_i, \ell_j) > 0.1 \ (0.2)$			
	for same- (different-)			
	flavour leptons			
J/ψ veto:	$m(\ell_i^+, \ell_j^-) > 5 \text{ GeV}$			
4ℓ mass range:	$80 < m_{4\ell} < 1000 \text{ GeV}$			

- Monte Carlo modelling:
 - Double parton scattering (DPS): Pythia8 double Drell-Yan
 - Single parton scattering (SPS): gg → ZZ(*) with MCFM, Higgs ggF with Powheg, qq → ZZ(*) with Pythia8

✓ For the continuum gg → ZZ, NLO k-factors are applied

 \rightarrow This is in opposite to 4-lepton paper, where the scaling factor for gg \rightarrow ZZ (describing the amount of missing higher-order corrections) is extracted from the M4I fit

Background simulated with various generators and includes $t\bar{t}$, tZ, $Z + b\bar{b}$, $Z + \gamma$, WZ, VH, VVV. The $Z + b\bar{b}$ and $t\bar{t}$ background components are scaled according to data driven studies of the 4lepton paper ($Z + b\bar{b}$ scale factors are varied by 50% for syst. unc.)

Event yields

Channel	N^{Data}	$N_{\mathrm{expected}}^{\mathrm{Total}}$	$N_{\mathrm{non}-gg}^{\mathrm{signal}}$	N_{gg}^{signal}	$N_{ au}^{ m MC}$	$N_{\rm bkg}$
4 <i>e</i>	85	80 ± 4	68.4 ± 3.4	6.24 ± 0.31	1.28 ± 0.06	3.6 ± 0.5
4μ	156	150.2 ± 2.9	128.2 ± 2.5	11.00 ± 0.21	2.18 ± 0.09	9.0 ± 1.5
2e2µ	235	205 ± 5	172 ± 5	16.0 ± 0.4	3.08 ± 0.13	13.6 ± 2.1
Total	476	435 ± 9	369 ± 9	33.3 ± 0.8	6.54 ± 0.14	26.2 ± 3.6

- The background is dominated by Z + bbar jets
- Pythia8 DPS expectation: 0.3 events

DPS with 4-lepton final states

Invariant dilepton masses

Phys. Lett. B 753 (2016) 552

Extraction of DPS signal and σ_{eff}

- Based on four-lepton topology
- Neural network to discriminate between DPS and non-DPS processes
- Fit of the neural network output variable to determine DPS contribution, f_{DPS}

$$\sigma_{DPS}^{AB} = \frac{k}{2} \frac{\sigma_{SPS}^{A} \sigma_{SPS}^{B}}{\sigma_{eff}} (1), \qquad f_{DPS} = \frac{\sigma_{DPS}^{4l}}{\sigma^{4l}} \quad \Rightarrow \quad \sigma_{eff} = \frac{k}{2} \frac{\sigma_{SPS}^{2l,A} \sigma_{SPS}^{2l,B}}{f_{DPS} \sigma^{4l}}$$

- k is defined for fully overlapping A and B (k = 1) or for fully disjoint A and B (k = 2)
 - For a partial overlap between A and B decompose Eq. (1) into the sum over phase space regions with well defined k_{ij} :

$$\sigma_{DPS}^{AB} = \sum_{i,j} \frac{k_{ij}}{2} \frac{\sigma_{SPS}^{A,i} \sigma_{SPS}^{B,j}}{\sigma_{eff}}$$

- ➢ i, j denote lepton pT bins, dileptons mass bins, and lepton flavours
- $\succ \sigma_{SPS}^{A(B),i(j)}$ are determined using Powheg-Box Drell-Yan MC at NLO QCD
- $\sigma^{4l} = 32.0 \pm 1.6 \text{ (stat.)} \pm 0.7 \text{ (syst.)} \pm 0.9 \text{ (lumi.)}$ fb from Phys. Lett. B 753 (2016) 552

DPS with 4-lepton final states

Neural network input variables

 $\Delta p_{\mathrm{T,ij}} = \frac{|\vec{p}_{\mathrm{T,i}} + \vec{p}_{\mathrm{T,j}}|}{|\vec{p}_{\mathrm{T,i}}| + |\vec{p}_{\mathrm{T,j}}|}$ $\Delta \phi_{ij} = |\phi_i - \phi_j|$ $\Delta y_{ij} = |y_i - y_j|$ ij = 12, 13, 14, 23, 24, 34 $\Delta_{ijkm} = |\phi_{i+j} - \phi_{k+m}|$ ijkm = 1234, 1324, 1423

- 21 input variables
- Leptons 1 and 2 (p_Tordered) are from the leading dilepton
- 3 and 4 are from the sub-leading dilepton
- All possible lepton combinations are considered

Neural network configuration

- Neural network (NN) architecture inherited from an earlier ATLAS 4-jet analysis
- Four layers with 21(input):30:9:1(output) neurons, output variable ξ_{DPS}:
 - > DPS: $\xi_{DPS} = 1$
 - > non-DPS (SPS and background): $\xi_{DPS} = 0$
- Technical implementation with the TMultilayerPerceptron class (ROOT)
 - kBFGS method for the NN training
- MC samples randomly divided into a test and training sample
 - ➤ ~10 000 DPS events, 100 000 non-DPS events
 - Event weights are applied in order to have the same effective number of events for DPS and non-DPS classes, also weights were increased for Zbb background

Fit results

- No hint of DPS events seen in the inclusive 4-lepton data sample
- MC profile fit yields the fraction of DPS events in the data after subtracting background, $f_{\text{DPS}} = -0.009 \pm 0.017$ (stat.)
- Translates into the upper limit $f_{\text{DPS}} < 0.042 @ 95\%$ CL (< 17 events)

DPS with 4-lepton final states

DPS model of Pythia8

- What correlations are possible between two Drell-Yan (DY) interactions within Pythia8 DPS model?
 - The x' space for the parton participating in the second subscattering is restricted to 0 < x' < 1 x in order to not break the proton momentum sum rule
 - > The PDF for the parton participating in the second subscattering is adjusted in both shape and normalization (e.g. if the first parton is a valence d quark, then the whole $d_v(x)$ PDF is gone for the second parton; needed to satisfy the quark-number sum rule)
 - ➢ Primordial k_T (Fermi motion of partons within the proton + effective parameterisation of infrared effects; k_T ~1-2 GeV): the k_T for two initial state partons become correlated by handling the beam remnant
 - Color reconnection (makes the fragmentation of outgoing colored systems dependent): initial state parton showers in case of double DY are not reconnected in the Pythia8 model
 - Initial state parton showers are interleaved between MPIs: may reduce the ISR p_T kicks compared to single parton scattering

What is the effect of these correlations?

Validation of the method

- The NN trained with MC events was applied to a set of overlaid data dilepton events
- Overlaid data dilepton events:
 - Model the DPS interaction
 - Data dilepton events are chosen randomly and overlaid if the distance between Z coordinates of vertices is less than 1 cm
 - Comparison made in a restricted phase space (high lepton pT's) due to trigger requirements

The Pythia8 model of double Drell-Yan DPS is consistent with the idea of two independent subscatterings

DPS with 4-lepton final states

14

Systematic uncertainties

- Experimental uncertainties:
 - Uncertainties of the electron and muon energy scales
 - Energy and momentum resolution
 - > Trigger, reconstruction and identification efficiencies
- SPS model uncertainties:
 - Vary the fractions of qq- and gg-initiated subprocesses. The variation is between the nominal MC prediction and the mixture giving the best description of the M4I spectrum
- Uncertainty in the background modelling:
 - Vary contribution of various background subprocesses according to the uncertainty of their normalisation factors (obtained from fits in control regions)
 - Variation of Z + bbar background gives the largest contribution to the systematic uncertainty
- The total systematic uncertainty amounts to 20% of the statistical uncertainty

Lower limit on σ_{eff}

$$\sigma_{eff} = \frac{k}{2} \frac{\sigma_{SPS}^{2l,A} \sigma_{SPS}^{2l,B}}{f_{DPS} \sigma^{4l}}$$

- The upper limit on f_{DPS} translates into the lower limit on σ_{eff} : $\sigma_{eff} > 1.0$ mb at 95% confidence level
- Compatible with previous measurements and limits on σ_{eff}
- First limit for double Drell-Yan DPS
- Predominantly $q\overline{q}$ initial state

Experiment (energy, final state, year)

Summary

Phys. Lett. B 790 (2019) 595

- Inclusive 4-lepton data are analysed for presence of double-parton scattering
- First study of the double-parton scattering via double Drell-Yan mechanism
- Small experimental uncertainties (fully leptonic final state)
- No signal of DPS found using 8 TeV data set corresponding to 20.2 fb⁻¹
- Upper limit set on the fraction of events originated via double Drell-Yan DPS within the inclusive four-lepton sample: $f_{\rm DPS} < 0.042$ at 95% CL
- A corresponding lower limit on the effective cross section is extracted: $\sigma_{eff} > 1.0$ mb at 95% CL

Backup

Two Z bosons from pileup

ATL-PHYS-PUB-2018-007

Study of multiple hard-scatter processes from different p p interactions in the same ATLAS event

• Number of hard pp interactions within the same bunch crossing:

 $N_{AB} = L\sigma_A < \mu > \sigma_B / \sigma_{inelastic}$

- For 2012 data taking conditions (average pileup of 21) evaluates to 16 double-Z events at 20fb-1, before any selection
 - Reduced by a factor of 2*10^3 if require that two Z vertices are the closest ones, and the distance between them is less than 1 cm
 - Reduced further by the 4-lepton event selection
- Pythia8 expectation is 0.4 events

Effective cross section as a function of centre-of-mass energy

JHEP11(2016)110

DPS with 4-lepton final states

Effective cross section

 If assume factorisation for DPS (shown to be valid for double Drell-Yan interaction by M. Diehl et al in JHEP 01 (2016) 076) :

$$\frac{d\sigma(x_1, x_2, x_3, x_4)}{d\hat{t}_1 \, d\hat{t}_2} = \frac{d\sigma^{13}}{d\hat{t}_1} \, \frac{d\sigma^{24}}{d\hat{t}_2} \times \int \frac{d^2 \vec{\Delta}}{(2\pi)^2} \, D_a(x_1, x_2; \vec{\Delta}) \, D_b(x_3, x_4; -\vec{\Delta})$$

> $D(x_1, x_2; \vec{\Delta})$ is the generalized double parton density function

 $\blacktriangleright \vec{\Delta}$ is a momentum parameter conjugate to transverse separation between two pairs of colliding partons

• Then
$$1/\sigma_{e\!f\!f}$$
 is $\frac{1}{\pi R_{\rm int}^2} = \int \frac{d^2 \overrightarrow{\Delta}}{(2\pi)^2} \frac{D(x_1, x_2, \overrightarrow{\Delta})D(x_3, x_4, -\overrightarrow{\Delta})}{D(x_1)D(x_2)D(x_3)D(x_4)}$

Why is the effective cross section smaller than the inelastic pp cross section?

- Simple geometric argument: the probability of DPS is higher for the full pp overlap
- If assume factorisation of $D(x_1, x_2; \vec{\Delta})$ against $x_1, x_2, \vec{\Delta}$ and uniform sphere parton distribution: $\sigma_{eff} \approx \sigma_{inel}/2.3$
 - If assume Gaussian parton distribution, will get an additional factor of 1/2

