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The major problem of existing field theories is not only the complexity of the
interaction description, but the single-particle nature of these theories.
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The tensor product of Minkowski spaces for two particles is an eight-dimensional
linear space. Its elements can be considered as columns:

za =



x0(1)
x1(1)
x2(1)
x3(1)
x0(2)
x1(2)
x2(2)
x3(2)


. (1)

(
x0(1), x

1
(1), x

2
(1), x

3
(1)

)
- for the quark,

(
x0(2), x

1
(2), x

2
(2), x

3
(2)

)
- for the antiquark
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We introduce a scalar product in this eight-dimensional space by the following
expression:

〈z |z〉 =
1

2

(
gMinc
ab xa(1)x

b
(1) + gMinc

ab xa(2)x
b
(2)

)
. (2)

Using the Jacobi coordinates, expression (2) takes the form:

〈z |z〉 = gMinc
ab

(
X aX b +

1

4
y ayb

)
(3)

A condition for the subset of simultaneity is:

y0 = 0. (4)

D. A. Ptashynskyy, I. V. Sharph et al. Internal States of Hadrons in Relativistic
Reference Frames // UJP Vol. 61 (2016), pp. 1039-1054
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The coordinates of a point on a subset of simultaneity are denoted by a
seven-component column qa. And the metric tensor of this space g ab is:

qa =



X 0

X 1

X 2

X 3

y1

y2

y3


, g ab =



1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −4 0 0
0 0 0 0 0 −4 0
0 0 0 0 0 0 −4


(5)

Next we define the scalar product on a subset of simultaneity so that it coincides
with the product (3), taking into account the condition (4):

〈q|q〉 = gabq
aqb, (6)
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The following group of matrices acts on a subset of simultaneity:

Ĝ =



Λ0
0 Λ0

1 Λ0
2 Λ0

3 0 0 0
Λ1
0 Λ1

1 Λ1
2 Λ1

3 0 0 0
Λ2
0 Λ2

1 Λ2
2 Λ2

3 0 0 0
Λ3
0 Λ3

1 Λ3
2 Λ3

3 0 0 0
0 0 0 0 R1

1 R1
2 R1

3

0 0 0 0 R2
1 R2

2 R2
3

0 0 0 0 R3
1 R3

2 R3
3


. (7)

The indices of the G a
b matrix take the values from 0 to 6. Λa

b(a, b = 0, 1, 2, 3) are
the elements of the Lorentz transformation matrix, and Ra

b(a, b = 1, 2, 3) are the
elements of the rotation matrix.
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We use the notation ψc1,c2;f1,f2(q) for the two-particle meson field, which after
quantization describes the processes of creation and annihilation of bound states
of quark and antiquark. The field ψc1,c2;f1,f2(q) takes the value on which the mixed
tensor representations of the SUc(3) and SUf (3) groups are realized:

ψ′c1,c2;f1,f2 (q) = u(c)†c1c3 u
(c)
c2c4u

(f )†
f1f3

u
(f )
f2f4
ψc3,c4;f3,f4 (q) . (8)

The dynamic equations for the field ψc1,c2;f1,f2(q) must be symmetric relative to
the transformations (7) and (8). So it may take the following form:

L(0) = g ab
∂ψ∗c1,c2;f1,f2 (q)

∂qa
∂ψc1,c2;f1,f2 (q)

∂qb
−

−M2
µψ
∗
c1,c2;f1,f2 (q)ψc1,c2;f1,f2 (q) .

(9)
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Introducing a covariant derivative, we get:

Lµ = g ab
(
∂ψ∗c1,c2;f1,f2 (q)/∂qa − igA(1)

a,g1 (q)ψ∗c21,c2;f1,f2 (q)λg1c1c21+

+igA(2)
a,g1 (q)λg1c22c2ψ

∗
c1,c22;f1,f2 (q)

)
×

×
(
∂ψc1,c2;f1,f2 (q)/∂qb + igA

(1)
b,g11

(q)ψc31,c2;f1,f2 (q)λg11c31c1−

−igA(2)
b,g11

(q)λg11c2c32ψc1,c32;f1,f2 (q)
)
−

−M2
µψ
∗
c1,c2;f1,f2 (q)ψc1,c2;f1,f2 (q) .

(10)

A
(1)
a,g1 (q) and A

(2)
a,g1 (q) are the compensating fields. Further, instead of these fields,

it would be convenient to consider their linear combinations, similar to Jacobi
variables:

A(+)
a,g1 (q) =

1

2

(
A(1)
a,g1 (q) + A(2)

a,g1 (q)
)
,

A(−)
a,g1 (q) = A(2)

a,g1 (q)− A(1)
a,g1 (q) .

(11)
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A local SUc(3) group representation is given for the values domain of the field
functions ψc1,c2;f1,f2(q). So this domain may be decomposed into a direct sum of
subspaces which are invariant relative to transformations of this representation.
And the field ψc1,c2;f1,f2(q) can be given as:

ψc1,c2;f1,f2 (q) = δc1c2ψf1,f2 (q) , (12)

where ψf1,f2(q) are the new field functions for the further dynamical equations,
which after quantization should describe the processes of creation and annihilation
of mesons. These dynamic equations can be obtained from the Lagrangian that is
formed if one substitutes (12) into (10) and takes into account the notation (11).
After these transformations, the Lagrangian (10) takes the form:

Lµ = 3g ab
(
∂ψ∗f1,f2 (q)/∂qa

) (
∂ψf1,f2 (q)/∂qb

)
+

+ 2g2g abA(−)
a,g1 (q)A

(−)
b,g1

(q)ψ∗f1,f2 (q)ψf1,f2 (q)− 3M2
µψ
∗
f1,f2 (q)ψf1,f2 (q) .

(13)
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In order to obtain the dynamic equations for a two-gluon field, we consider the
simplest tensor that can be formed from single-gluon fields:

Aab,g1g2 (q) = g2
(
A(−)
a,g1 (q)A

(−)
b,g2

(q)
)
,

a, b = 4, 5, 6.
(14)

Expanding the linear space of tensors Aab,g1g2(q) relative to the group (7) into the
direct sum of invariant subspaces, we pick a term corresponding to a projection on
a scalar subspace:

Aab,g1g2 (q) = −Ag1g2 (q) gab + . . . (15)

Convolving both sides of the equality (15) with the metric tensor g ab we obtain:

Ag1g2 (q) =
4

7
g2

6∑
b=4

(
A
(−)
b,g1

(q)A
(−)
b,g2

(q)
)

(16)
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Next we apply a similar procedure for internal indices:

Ag1g2 (q) = A (q) δg1g2 + . . . ,

A (q) =
1

14
g2

6∑
b=4

(
A
(−)
b,g1

(q)A
(−)
b,g1

(q)
)

=

=
1

14
V (q) ,

(17)

where V (q) is defined by the relation (18), and the summation is performed over
the repeated index g1:

V (q) = g2

(
6∑

b=4

(
A(−)
a,g1 (q)

)2)
, (18)
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The kinetic part of the Lagrangian for the Ag1g2(q) field can be given as:

L
(0)
G =

1

2
g ab ∂Ag1g2 (q)

∂qa
∂Ag1g2 (q)

∂qb
− 1

2
M2

GAg1g2 (q)Ag1g2 (q) . (19)

Replacing ordinary derivatives by covariant ones, and performing some
calculations, we obtain:

LV =
1

2
g ab ∂V (q)

∂qa
∂V (q)

∂qb
− 3

2
(V (q))3 − 1

2
M2

G (V (q))2. (20)
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Having a Lagrangian for the field V (q), we can obtain a dynamic equation for this
field as the Euler-Lagrange equation:

− g ca ∂
2V (q)

∂qc∂qa
−M2

GV (q)− 9

2
(V (q))2 = 0. (21)

We introduce the function V (X , ~y) in the form

V (X , ~y) = V0 (~y) + V1 (X , ~y) ,

V1 (X , ~y) ≡ V (X , ~y)− V0 (~y) ,
(22)

Then the function V0 (~y) will enter the complete Lagrangian as the potential
energy of the interaction of nonrelativistic constituent quarks. At the same time, it
will satisfy the equation:

4∆~yV0 (~y)−M2
GV0 (~y)− 9

2
(V0 (~y))2 = 0. (23)

Analyzing the properties of the solutions of equation (23), we can obtain
information on the potential of the quarks interaction.

Odessa National Polytechnic University Multi-particle fields on the subset of simultaneity 18 May, 2019 13 / 20



Introducing the dimensionless internal coordinates ~r , dimensionless glueball mass
mG and dimensionless potential energy u (~r) as follows:

~y = l~r ,MG = l−1mG ,

V0 (~y) = V0 (l~r) = l−2u (~r) .
(24)

Then, instead of the equation (23) in the introduced dimensionless variables, we
obtain:

4∆~ru (~r)−m2
Gu (~r)− 9

2
(u (~r))2 = 0. (25)

Making a standard replacement and applying the boundary conditions:

u (r) =
χ (r)

r
, χ (r)|r=0 = 0,

dχ (r)

dr

∣∣∣∣
r=0

= C ,C ∈ R, (26)

we finally obtain:

d2χ (r)

dr2
=

9

8

χ (r)
(
χ (r) +

(
m2

G/9
)
r
)

r
. (27)
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u(
r)

0

2

4

6

8
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r
0 0,5 1 1,5 2 2,5 3 3,5

C = 1.1
mG

2/9 = 0.1
When r increases, the potential
u(r) tends to infinity. I.e. the confi-
nement.

Numerical calculation of the dimensionless inter-quark potential u(r) dependence
on dimensionless distance r for C = 1.1,m2

G/9 = 0.1.
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u(
r)

−16

−15

−14

−13

−12

−11

r
0 2 4 6 8 10 12 14 16

C = 15.1
mG

2/9 = 10.1

When r increases, the potenti-
al u(r) tends to some negati-
ve constant value. Thus the ei-
genvalue of the square of internal
Hamiltonian will definitely be
negative. Since this eigenvalue is
a coefficient at the squared field
describing the bound state of two
gauge bosons, this corresponds
to the mechanism of spontaneous
symmetry breaking.

Numerical calculation of the dimensionless inter-quark potential u(r) dependence
on dimensionless distance r for C = 15.1,m2

G/9 = 10.1.
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Conclusions

We propose the two-particle fields model. With this model we can describe
the confiment of quarks in hadrons and the interaction of hadrons with each
other.
In this model, the energy-momentum conservation law holds true precisely for
hadrons (as it is in the experiment), and not for the constituent particles.
The model contains a dynamic equation which describes the confiment of
quarks under certain boundary conditions, and the spontaneous symmetry
breaking – under anothers. I.e. it reproduces the basic properties of strong
and weak interactions.
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Thank you for attention!
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φ̂′a (X ′) = Û+ (Λ) φ̂a (X ) Û (Λ) = D̂ab (Λ) φ̂b
(
X = Λ̂−1X ′

)
(28)
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