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QCD phase diagram: current and future experiments
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QCD phase diagram, main features:

• It is an analytic crossover for µ = 0 (there are no divergences in
thermodynamic quantities). There are no symmetries to break. It
would be a real phase transition for massless quarks.

• For T = 0 it is a first order phase transition

• The first order phase transition turns into a crossover somewhere in
the middle
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Light quark condensate 〈ψ̄ψ〉 from lattice QCD
A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
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Critical temperatures from lattice QCD for µ = 0

Tc from susceptibility’s peak for 2+1 flavors using different kinds of
fermion representations. Values show some discrepancies:

MILC collaboration: Tc = 169(12)(4) MeV.

BNL-RBC-Bielefeld collaboration: Tc = 192(7)(4) MeV.

Wuppertal-Budapest collaboration has consistently obtained smaller
values, the last being Tc = 147(2)(3) MeV.

HotQCD collaboration: Tc = 154(9) MeV.

Differences may be attributed to different lattice spacings
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For µB 6= 0 matters get complicated: Sign problem
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The sign problem

Lattice QCD is affected by the sign problem

The calculation of the partition function produces a fermion
determinant.

DetM = Det(6D + m + µγ0)

Consider a complex value for µ. Take the determinant on both sides
of the identity

γ5( 6D + m + µγ0)γ5 = (6D + m − µ∗γ0)†,

we obtain

Det( 6D + m + µγ0) = [Det(6D + m − µ∗γ0)]∗ ,

This shows that the determinant is not real
unless µ = 0 or purely imaginary
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The sign problem

For real µ it is not possible to carry out the direct sampling on a
finite density ensemble by Monte Carlo methods

It’d seem that the problem is not so bad since we could naively write

DetM = |DetM|e iθ

To compute the thermal average of an observable O we write

〈O〉 =

∫
DUe−SYM DetM O∫
DUe−SYM DetM

=

∫
DUe−SYM |DetM|e iθ O∫
DUe−SYM |DetM|e iθ

,

SYM is the Yang-Mills action.
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The sign problem

Written in this way, the simulations can be made in terms of the
phase quenched theory where the measure involves |DetM| and the
thermal average can be written as

〈O〉 =
〈Oe iθ〉pq

〈e iθ〉pq
.

The average phase factor (also called the average sign) in the phase
quenched theory can be written as

〈e iθ〉pq = e−V (f−fpq)/T ,

where f y fpq are the free energy densities of the full and the phase
quenched theories, respectively and V is the 3-dimensional volume.
If f − fpq 6= 0, the average phase factor decreaces exponentially when
V grows (thermodynamical limit) and/or when T goes to zero.

Under these circumstances the signal/noise ratio worsens.
This is known as the severe sign problem
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Chiral transition and freeze out curve
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QCD phase diagram from analytic continuation

R. Bellwiede, S. Borsanyi, Z. Fodor, J. Günther, S. D. Katz, C. Ratti, K. K. Szabo, Phys. Lett. B 751, 559-564 (2015).
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The Critical End Point (CEP)
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CEP location µB/T > 2 for 135 MeV < T < 155 MeV

A. Bazavov, et al., Phys. Rev. D 95, 054504 (2017).
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Superstatistics

Usual thermal description assumes equilibrium after some time
characterized by values T and µ taken as common within the
whole interaction volume.

System evolution subsequently described by time evolution of the
temperature down to kinetic freeze-out, where particle spectra are
established.

This picture rests on two ingredients: the validity of
Gibbs-Boltzmann statistics and a system’s adiabatic evolution.

Adiabatic evolution can perhaps be safely assumed, however
Gibbs-Boltzmann statistics can be applied only to systems long
after the relaxation time has elapsed and randomization has
been achieved within the system volume.
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Superstatistics

In the case of a HIC, the reaction starts off from nucleon-nucleon
interactions.

If thermalization is achieved, it seems natural to assume that this
starts off in each of the interacting nucleon pair subsystems, and later
spreads to the entire volume.

In this scenario T and µ within each subsystem may not be the
same for other subsystems.

A superposition of statistics, one in the usual Gibbs-Boltzmann sense
for particles in each subsystem, and another one, for the probability to
find particular values for T and µ for different subsystem, seems
appropriate.

This is described by the so-called superstatistics scenario.
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Average Boltzmann factor

To implement the scenario, one defines an averaged Boltzmann factor

B(Ĥ) =

∫ ∞
0

f (β)e−βĤdβ,

f (β) is the probability distribution of β.

The partition function then becomes

Z = Tr[B(Ĥ)]

=

∫ ∞
0

B(E )dE ,

The last equality holds for a suitably chosen set of Hamiltonian
eigenstates.

Alejandro Ayala (ICN-UNAM) New trends in HEP 2019 May, 2019 17 / 34



Two possible averaging procedures

Superstatistics Type A: compute partition function as the trace of a
modified Boltzmann factor coming from first averaging the possible
temperature values

Superstatistics Type B: compute first the trace of the Boltzmann
factor for each subsystem and then average over the different
subsystems temperatures

Case B can be easily reduced to case A by replacing the distribution
f (β) by a new distribution f̃ (β) = CZ−1(β)f (β), where C is a
suitable normalization constant.

Since the normalization factor in the second case depends on β, one
can expect a different result when working with the same f (E ).

Nevertheless, different f (E )’s lead to similar entropic factors when
expanded to first order in 1/N.
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Average Boltzmann factor

A possible choice to distribute the random variable β is the χ2

distribution

f (β) =
1

Γ(N/2)

(
N

2β0

)N/2

βN/2−1e−Nβ/2β0 ,

Γ is the Gamma function, N is the number of subsystems

β0 ≡
∫ ∞

0
βf (β)dβ = 〈β〉, (1)

The χ2 distribution emerges for a variable β made out from the sum
of positive definite random variables Xi each of which is Gaussian
distributed

β =
N∑
i=1

X 2
i , (2)
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Average Boltzmann factor

The variance is given by

〈β2〉 − β2
0 =

2

N
β2

0 .

Given that β is a positive-definite quantity, thinking of it as being the
sum of positive-definite random variables is an adequate model.
Notice however that these variables do not necessarily correspond to
the inverse temperature in each of the subsystems.

However, since the use of the χ2 distribution allows for an analytical
treatment, one can take this as the distribution to model the possible
values of β.
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Average Boltzmann factor

The effective Boltzmann factor is given by

B(Ĥ) = (1 +
2

N
β0Ĥ)−

N
2 .

Notice that in the limit when N →∞ the effective Boltzmann factor
becomes the ordinary one. For large but finite N one can expand as

B(Ĥ) =
[
1 +

1

2

( 2

N

)
β2

0Ĥ
2 − 1

3

( 2

N

)2
β3

0Ĥ
3 + · · ·

]
× e−β0Ĥ

Working up to first order in 1/N

B(Ĥ) =

[
1 +

β2
0

N

(
∂

∂β0

)2
]
e−β0Ĥ .
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Average Partition function

Therefore, the partition function to first order in 1/N is given by

Z =

[
1 +

β2
0

N

(
∂

∂β0

)2
]
Z0 (3)

with

Z0 = e−Vβ0V eff
, (4)

where V and V eff are the system’s volume and effective potential,
respectively.
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Model QCD: Linear sigma model

Effective QCD models (linear sigma model with quarks)

L =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2+

a2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2

+ iψ̄γµ∂µψ − g ψ̄(σ + iγ5~τ · ~π)ψ,

σ → σ + v ,

m2
σ =

3

4
λv2 − a2,

m2
π =

1

4
λv2 − a2

mf = gv

v0 =
2a√
λ
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Three level potential (vacuum stability)

V tree(v) = −a2

2
v2 +

λ

4
v4

v0 =

√
a2

λ
,

V tree = −a2

2
v2 +

λ

4
v4 → −(a2 + δa2)

2
v2 +

(λ+ δλ)

4
v4.

δa2 and δλ constants to be determined from the properties of the phase
transitions at (µB = 0,T c(µB = 0)) and (µcB(T = 0),T = 0).

M. E. Carrington, Phys. Rev. D 45, 2933
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One-loop boson and fermion effective potential

V (1)b(v ,T ) = T
∑
n

∫
d3k

(2π)3
lnD(ωn, ~k)1/2,

D(ωn, ~k) =
1

ω2
n + k2 + m2

b

,

V (1)f(v ,T , µq) = −T
∑
n

∫
d3k

(2π)3
Tr[lnS(ω̃n − iµq, ~k)−1],

S(ω̃n, ~k) =
1

γ0ω̃n + /k + mf
.

ωn = 2nπT and ω̃n = (2n + 1)πT are
the boson and fermion Matsubara frequencies
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Ring-diagrams effective potential

V Ring(v ,T , µq) =
T

2

∑
n

∫
d3k

(2π)3

× ln[1 + Π(mb,T , µq)D(ωn, ~k)]

Π(mb,T , µq) is the boson’s self-energy.
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Diagrams contributing to bosons’ self-energies

(a) (b) (c)

Π(T , µq) = −NfNcg
2 T 2

π2 [Li2(−eµq/T ) + Li2(−e−µq/T )] + λT 2

2 .
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Effective potential: High T approximation

V eff = −(a2 + δa2)

2
v2 +

(λ+ δλ)

4
v4

+
∑
b=σ,π̄

{
−

m4
b

64π2

[
ln
( a2

4πT 2

)
− γE +

1

2

]
− π2T 4

90
+

m2
bT

2

24
−

(m2
b + Π(T , µq))3/2T

12π

}
+
∑
f =u,d

{ m4
f

16π2

[
ln
( a2

4πT 2

)
− γE +

1

2

− ψ0
(1

2
+

iµq
2πT

)
− ψ0

(1

2
− iµq

2πT

)]
− 8m2

f T
2
[
Li2(−eµq/T ) + Li2(−e−µq/T )

]
+ 32T 4

[
Li4(−eµq/T ) + Li4(−e−µq/T )

]}
Alejandro Ayala (ICN-UNAM) New trends in HEP 2019 May, 2019 28 / 34



Effective QCD phase diagram
a = 133 MeV, g = 0.51, λ = 0.36,
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Effective QCD phase diagram
a = 133 MeV, g = 0.63, λ = 0.4

æ æ æ æ æ æ
æ
æ
æ
æ
æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

øø

à à à à à à
à
à
à
à
à
à

à

à

à

à

à

à

à

à

à

øø

ò ò ò ò ò ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

ò

ò

ò

øø

ì ì ì ì ì ì
ì
ì
ì
ì
ì
ì

ì

ì

øø

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.90

0.92

0.94

0.96

0.98

1.00

Μq�Tc
0

T
c
�T

c0

ø CEP

ì N=100

ò N=200

à N=400

æ N=¥

Alejandro Ayala (ICN-UNAM) New trends in HEP 2019 May, 2019 30 / 34



Number of subsystems in a HIC

To apply these considerations in the context of relativistic heavy-ion
collisions, we recall that temperature fluctuations are related to the
system’s heat capacity by

(1− ξ)

Cv
=
〈(T − T0)2〉

T 2
0

,

(1− ξ) accounts for deviations from the Gaussian distribution for the
random variable T .

Fluctuations in T can be written in terms of fluctuations in β as

〈(T − T0)2〉
T 2

0

=
β2

0 − 〈β2〉
〈β2〉

=

(
β2

0
〈β2〉

)2
〈β2〉 − β2

0

β2
0
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Number of subsystems in a HIC

Recall that

〈β2〉 − β2
0 =

2

N
β2

0 .

Thus

( β2
0

〈β2〉

)2
=

(
1

1 + 2/N

)2

' 1− 4/N.

Therefore, for N finite but large

〈(T − T0)2〉
T 2

0

' 〈β
2〉 − β2

0

β2
0

=
2

N
,
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Number of subsystems in a HIC

This means that the heat capacity is related to the number of
subsystems by

(1− ξ)

Cv
=

2

N
.

To introduce the specific heat cv for a HIC, it is natural to divide Cv

by the number of participants Np in the reaction. Therefore

2

N
=

(1− ξ)

Npcv
=

2

N
=

(1− Np/A)

Npcv
.

ξ is estimated as ξ = Np/A, where A is the smallest mass number of
the colliding nuclei. This provides the link between N and Np in a
HIC.
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Conclusions

Main goal of future experiments in the field heavy-ion physics is to
study QDC at finite baryon density.

Many challenges. Of particular importance to determine whether
there is a CEP.

If thermalization is local, need to compute average temperature:
Superstatistics is an ideal tool.

Superstatistics combined with effective models are useful tools to gain
insight into the possible CEP location when thermalization is partial.

Linear sigma model is one possibility: Complete exploration requires
couplings to bear baryon density and temperature effects.
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