Superstatistics and the QCD Critical End Point

Alejandro Ayala

Instituto de Ciencias Nucleares, UNAM

ayala@nucleares.unam.mx
May, 2019

OO0 WO AT L)

Instituto de
Ciencias
Nucleares
UNAM

Alejandro Ayala (ICN-UNAM) New trends in HEP 2019 May, 2019 1/34



Overview

@ QCD phase diagram
@ Finite temperature and vanishing baryon chemical potential
@ Non-vanishing baryon chemical potential: The sign problem.

© Superstatistics
@ Average Boltzmann factor
@ Average Partition function

© QCD phase diagram from chiral symmetry restoration
@ Linear sigma model with quarks
o Effective potential

@ Results: Critical End Point location

© Conclusions
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QCD phase diagram: current and future experiments
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QCD phase diagram, main features:

e It is an analytic crossover for 1 = 0 (there are no divergences in
thermodynamic quantities). There are no symmetries to break. It
would be a real phase transition for massless quarks.

e For T =0 it is a first order phase transition

e The first order phase transition turns into a crossover somewhere in
the middle
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Light quark condensate (1)) from lattice QCD

A. Bazavov et al., Phys. Rev. D 85, 054503 (2012).
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Critical temperatures from lattice QCD for =0

T, from susceptibility’s peak for 2+1 flavors using different kinds of
fermion representations. Values show some discrepancies: J

@ MILC collaboration: T, = 169(12)(4) MeV.
o BNL-RBC-Bielefeld collaboration: T, = 192(7)(4) MeV.

@ Wuppertal-Budapest collaboration has consistently obtained smaller
values, the last being T, = 147(2)(3) MeV.

@ HotQCD collaboration: T. = 154(9) MeV.

Differences may be attributed to different lattice spacings J
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For g # 0 matters get complicated: Sign problem

T

hadrons
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The sign problem

o Lattice QCD is affected by the sign problem
@ The calculation of the partition function produces a fermion
determinant.

DetM = Det(P + m + uyo)

o Consider a complex value for y. Take the determinant on both sides
of the identity

Y5(P + m+ pyo)ys = (P + m — ™),
we obtain

Det(P + m + pyo) = [Det(P + m — p*0)]"

This shows that the determinant is not real
unless 1 = 0 or purely imaginary J
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The sign problem

For real p it is not possible to carry out the direct sampling on a
finite density ensemble by Monte Carlo methods J

@ It'd seem that the problem is not so bad since we could naively write
DetM = |DetM|e’®
@ To compute the thermal average of an observable O we write

[ DUe™®mDetM O [ DUe >"|DetM|e® O

(o) [ DUe=SwwDetM [ DUe=5vm|DetM|e®

@ Sy is the Yang-Mills action.
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The sign problem

@ Written in this way, the simulations can be made in terms of the
phase quenched theory where the measure involves |DetM| and the
thermal average can be written as

Oei@
(0) — ( : Jpa
(e”)pq
@ The average phase factor (also called the average sign) in the phase
quenched theory can be written as

<ei9>pq — e7V(ffqu)/T7

where f y f,, are the free energy densities of the full and the phase
quenched theories, respectively and V is the 3-dimensional volume.

o If f — f,q # 0, the average phase factor decreaces exponentially when
V grows (thermodynamical limit) and/or when T goes to zero.

Under these circumstances the signal/noise ratio worsens.
This is known as the severe sign problem
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Chiral transition and freeze out curve

Chiral transition, hadronization and freeze-out
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QCD phase diagram from analytic continuation
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R. Bellwiede, S. Borsanyi, Z. Fodor, J. Giinther, S. D. Katz, C. Ratti, K. K. Szabo, Phys. Lett. B 751, 559-564 (2015).
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The Critical End Point (CEP)

15t order phase transition
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Xiaofeng Luo ISMD 2016, Jeju, Korea, Aug.29-Sept.2, 2016 3/18
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CEP location pug/ T > 2 for 135 MeV < T < 155 MeV
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A. Bazavov, et al., Phys. Rev. D 95, 054504 (2017).
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Superstatistics

@ Usual thermal description assumes equilibrium after some time
characterized by values T and u taken as common within the
whole interaction volume.

@ System evolution subsequently described by time evolution of the
temperature down to kinetic freeze-out, where particle spectra are
established.

@ This picture rests on two ingredients: the validity of
Gibbs-Boltzmann statistics and a system’s adiabatic evolution.

@ Adiabatic evolution can perhaps be safely assumed, however
Gibbs-Boltzmann statistics can be applied only to systems long
after the relaxation time has elapsed and randomization has
been achieved within the system volume.
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Superstatistics

@ In the case of a HIC, the reaction starts off from nucleon-nucleon
interactions.

o If thermalization is achieved, it seems natural to assume that this
starts off in each of the interacting nucleon pair subsystems, and later
spreads to the entire volume.

@ In this scenario T and u within each subsystem may not be the
same for other subsystems.

@ A superposition of statistics, one in the usual Gibbs-Boltzmann sense
for particles in each subsystem, and another one, for the probability to
find particular values for T and p for different subsystem, seems
appropriate.

o This is described by the so-called superstatistics scenario.
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Average Boltzmann factor

@ To implement the scenario, one defines an averaged Boltzmann factor
BA) = [ F (9)e s,

0
e f (3) is the probability distribution of 3.
@ The partition function then becomes

Z = TiB(H)
= / B(E)dE,
0

@ The last equality holds for a suitably chosen set of Hamiltonian
eigenstates.
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Two possible averaging procedures

@ Superstatistics Type A: compute partition function as the trace of a
modified Boltzmann factor coming from first averaging the possible
temperature values

@ Superstatistics Type B: compute first the trace of the Boltzmann
factor for each subsystem and then average over the different
subsystems temperatures

@ Case B can be easily reduced to case A by replacing the distribution
f (B) by a new distribution f (3) = CZ71(B)f (B), where C is a
suitable normalization constant.

@ Since the normalization factor in the second case depends on 3, one
can expect a different result when working with the same £ (E).

o Nevertheless, different f (E)'s lead to similar entropic factors when
expanded to first order in 1/N.
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Average Boltzmann factor

@ A possible choice to distribute the random variable 3 is the x?
distribution

1 N2 e s/
PO = rw (2@)) B e,

o [ is the Gamma function, N is the number of subsystems

By = /0 " Bf (B)dB = (8), (1)

@ The x? distribution emerges for a variable 3 made out from the sum
of positive definite random variables X; each of which is Gaussian
distributed

N

B = ZXiz’ (2)
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Average Boltzmann factor

@ The variance is given by
2
(%) — B3 = 5%

@ Given that § is a positive-definite quantity, thinking of it as being the
sum of positive-definite random variables is an adequate model.
Notice however that these variables do not necessarily correspond to
the inverse temperature in each of the subsystems.

@ However, since the use of the y? distribution allows for an analytical
treatment, one can take this as the distribution to model the possible
values of 3.
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Average Boltzmann factor

@ The effective Boltzmann factor is given by

B(A) = (1+ 1 fof)

_N
2-

@ Notice that in the limit when N — oo the effective Boltzmann factor
becomes the ordinary one. For large but finite N one can expand as

BIA) = [1+5(2)RR () A+

x e PoH

e Working up to first order in 1/N

578 i ? —BoH
1+N<6ﬂ0>]e .
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Average Partition function

@ Therefore, the partition function to first order in 1/N is given by

- YA
7 = 1+N(8BO>IZO (3)

@ with

ZO = e,v,goveff7 (4)

o where V and V¢ are the system’s volume and effective potential,
respectively.
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Model QCD: Linear sigma model

o Effective QCD models (linear sigma model with quarks)

1 2 1o 0, @ 5
L = 5(6MO') +§(8u7r) +§(G +7°) —
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Three level potential (vacuum stability)

Vtree(v) — _‘922\/2 + %Vél
32
Vo = 77

2 2 2
Vtree:_a2v2+iv4_>_(a —;63 )V2—|- ()"25/\)‘/4'

§a® and J)\ constants to be determined from the properties of the phase
transitions at (ug = 0, T<(ug = 0)) and (ug(T =0), T =0).

M. E. Carrington, Phys. Rev. D 45, 2933
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One-loop boson and fermion effective potential

3
vb(, T) = TZ/(Z /)‘3 In D(wp, k)2,
i
- 1
D(wn, k) = w2+ k2 4+ m2’

wp=2ntT and @, = (2n+ 1) T are
the boson and fermion Matsubara frequencies
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Ring-diagrams effective potential

i T a3k
VRNE(y T pg) = 22/(27T)g;
n
X In[L4M(mp, T, 11g) D(wn, k)]

M(mp, T, g) is the boson’s self-energy.
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Diagrams contributing to bosons’ self-energies
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Effective potential: High T approximation
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Effective QCD phase diagram

a=133 MeV, g =063, A\ =04

1.00‘ [ ] o ,
Tiiedo.,
(& & o AR l. [}
0.98 * e A4 ° ]
L < . . A A. .. :
i .
= 40.96" TR ]
N r * A :
S [ ® N=o ¢ 4 ]
N 0.94] B N=400 Y b
o A N=200 4 1
i ¢ N=100 4 ]
0.92" *  CEP 2 1

Alejandro Ayala (ICN-UNAM) New trends in HEP 2019 May, 2019 30/ 34



Number of subsystems in a HIC

@ To apply these considerations in the context of relativistic heavy-ion
collisions, we recall that temperature fluctuations are related to the
system's heat capacity by

1-9 (T -To)*
¢ T2

@ (1 —¢) accounts for deviations from the Gaussian distribution for the
random variable T.

@ Fluctuations in T can be written in terms of fluctuations in 5 as

(T-ToP) _ G-
72 )
(&) 5 - 53
5
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Number of subsystems in a HIC

@ Recall that

(%) — 55 = ;5%

=4

@ Thus

2 2
()" = (rz2m)
1—4/N.

12

@ Therefore, for N finite but large

(T-To)) (BH—-B 2
T2 - B2 N
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Number of subsystems in a HIC

@ This means that the heat capacity is related to the number of
subsystems by

(1-¢) 2

G N

@ To introduce the specific heat ¢, for a HIC, it is natural to divide C,
by the number of participants N, in the reaction. Therefore

2 (1-9 2 (1-Ny/A)

N Npc, N Npc,

@ ¢ is estimated as £ = N, /A, where A is the smallest mass number of

the colliding nuclei. This provides the link between N and N, in a
HIC.
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Conclusions

@ Main goal of future experiments in the field heavy-ion physics is to
study QDC at finite baryon density.

@ Many challenges. Of particular importance to determine whether
there is a CEP.

o If thermalization is local, need to compute average temperature:
Superstatistics is an ideal tool.

@ Superstatistics combined with effective models are useful tools to gain
insight into the possible CEP location when thermalization is partial.

@ Linear sigma model is one possibility: Complete exploration requires
couplings to bear baryon density and temperature effects.
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