Phase transitions and Bose-Einstein condensation in alpha-nucleon matter

Leonid Satarov

Frankfurt Institute for Advanced Studies, Frankfurt am Main and NRC "Kurchatov Institute", Moscow

with I. N. Mishustin (FIAS & KI), M. I. Gorenstein (FIAS & BITP), A. Motornenko (FIAS), V. Vovchenko (FIAS), H. Stöcker (FIAS & GSI)

Recent results -> Phys. Rev. C 99, 024909 (2019)

Contents

- Introduction
- Equation of state (EoS) of iso-symmetric α -N matter with mean-field interaction $U = U(n_N, n_\alpha) \rightarrow \text{Skyrme-like attraction} + repulsion$
 - limiting case of ideal lpha-N gas (U=0) in chemical equilibrium $lpha \leftrightarrow 4N$
 - pure nucleon matter (n_{α} =0) with interaction \rightarrow fixing NN interaction terms
 - pure alpha matter \rightarrow fixing $\alpha \alpha$ interaction terms, using [1,2]
 - cold α -N matter \rightarrow ground state (GS) at T=0 \rightarrow upper limit for α N attraction term
 - isotherms of chemical equilibrium $(\mu_{\alpha} = 4\mu_N)$ in (n_N, n_{α}) and (μ_B, p) planes
 - region of states with Bose-Einstein condensation (BEC) of α 's $(ec{p}_{lpha}=0)$
- Phase diagram of α -matter \rightarrow domains with liquid-gas phase transitions (LGPT) and BEC
- Stable (N-like) and metastable (α -like) LGPT
- Conclusions and outlook

[1] J. Clark and T.-W. Wang, Ann. Phys. 40 (1966) 127 \rightarrow microscopic calculations for cold α -matter [2] L. M. Satarov et al., J. Phys. G44 (2017) 125102 \rightarrow phase diagram of α -matter with Skyrme interaction

Previous studies of strongly interacting matter with clusters

- generalized liquid-drop model \rightarrow J. Lattimer and F. Swesty, Nucl. Phys. A535 (1991)
- statistical models \rightarrow A. Botvina and I. Mishustin, Nucl. Phys. A843 (2010);

A. Buyukcizmeci et al., Nucl. Phys. A907 (2013);

S. Furusawa and I. Mishustin, Phys. Rev. C97 (2018)

• RMF models \rightarrow M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A837 (2010);

J. Pais et al., Phys. Rev. C97 (2018);

- S. Typel, J. Phys. G45 (2018)
- virial EoS \rightarrow C. Horowitz and A. Schwenk, Nucl. Phys. A776 (2006)

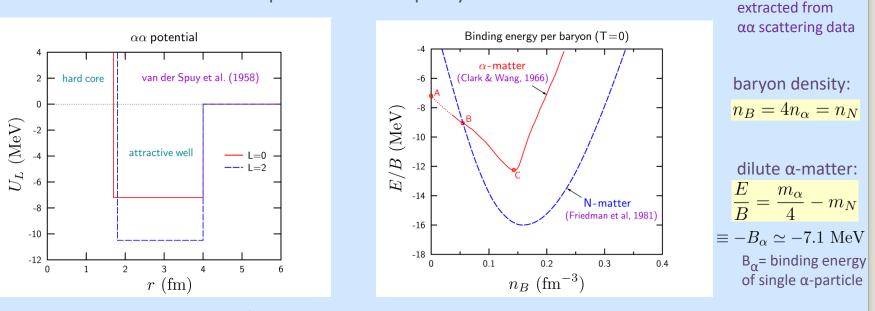
(use information on observed phase shifts of NN, N α and $\alpha\alpha$ scatterings, the model applicable only at small particle densities)

- multi-component van der Waals model \rightarrow V. Vovchenko et al., Phys. Rev. C96 (2017) (N α and $\alpha\alpha$ attractive interactions are disregarded)
- quasi-particle model → X.-H. Wu et al., J. Low Temp. Phys. 189 (2017) [*] (only small densities are considered)

All these models disregard the BEC effects (except [*])

Energy per baryon in cold α -matter

Clark & Wang (1966): variational calculation with phenomenological αα potential, comparison with isospin-symmetric nucleon matter

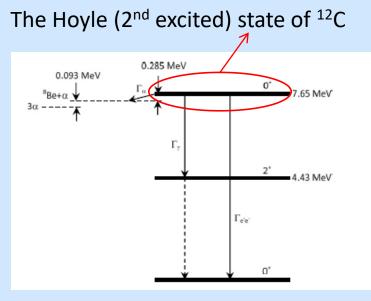


+ Coulomb potential (4e²/r)

 α -matter is energetically favorable at low baryon densities $n_{\alpha} \lesssim 0.01 \text{ fm}^{-3}$ (section AB) ground state (GS) of pure α -matter at $n_{\alpha} \simeq 0.036 \text{ fm}^{-3}$ (point C) It has smaller binding energy $E/B \simeq -12 \text{ MeV}$ as compared to nuclear matter

Systems/processes with enhanced formation of α 's

- low-density excited states of light nuclei (¹²C, ¹⁶O, ²⁰Ne, ... ← large-size isomers)
- periphery of heavy nuclei
- multifragmentation reactions in heavy-ion collisions
- outer regions of compact stars
- neutron star mergers, supernovae matter



(dilute and warm matter)

 \rightarrow key role in stellar nucleosynthesis

two-step process: 1) $\alpha + \alpha \rightarrow {}^{8}Be$ 2) $\alpha + {}^{8}Be \rightarrow {}^{12}C^* \rightarrow {}^{12}C + \gamma$

Enhanced rate of ^{12}C formation at T \gtrsim 200 keV

Röpke et al. (1998): Hoyle state \approx BEC state of 3α

Our assumptions

- isospin symmetry $(N_p = N_n)$
- homogeneous matter (no surface terms)
- no Coulomb interactions
- no clusters, except α (we neglect d, t, ³He, ⁵He ... and their excited states)
- moderate temperatures $(T \lesssim 30 \text{ MeV})$

 \rightarrow neglect contributions of mesons (π , ρ , K ...), other baryons (Δ , N^{*}, Λ ...) and antibaryons \rightarrow nonrelativistic limit is accurate, since $T \ll m_N \simeq 0.939 \text{ GeV}, m_{\alpha} \simeq 3.727 \text{ GeV}$

- chemical equilibrium with respect to reactions $\ \ lpha \leftrightarrow 4N$
- mean-field approximation for particle interactions
- no in-medium modification of particles (vacuum masses etc.)

Thermodynamic functions (α-N matter)

 $\Rightarrow \text{ free energy density } F/V = f(T, n_N, n_\alpha) \rightarrow \text{thermodynamic potential in canonical ensemble}$ $\Rightarrow \text{ chemical potentials } \mu_i(T, n_N, n_\alpha) = (\partial f/\partial n_i)_T \quad (i = N, \alpha) \rightarrow (1)$ $\Rightarrow \text{ pressure } p = \mu_N n_N + \mu_\alpha n_\alpha - f \quad \text{entropy density } s = -(\partial f/\partial T)_{\{n_i\}}$ $\Rightarrow \text{ energy density } \varepsilon = Ts + f \quad \text{baryon density } n_B = n_N + 4n_\alpha = B/V$ $\Rightarrow \text{ 'mass' fraction of alphas } \chi = 4n_\alpha/n_B \quad \rightarrow \text{ one can use } (n_B, \chi) \text{ instead of } (n_N, n_\alpha) \quad (\chi \leq 1)$ $\text{ condition of chemical equilibrium: } \mu_N = \mu_\alpha/4 \equiv \mu_B \quad \rightarrow (2) \quad (\mu_B \text{- baryon chem. potential)$

substituting (1) into (2) \rightarrow isotherms of chem. equilibrium in $(n_N, n_\alpha), (n_B, \chi)$ or (μ_B, p) planes

 \implies $p = p(T, \mu_B), \ n_B = (\partial p / \partial \mu_B) \dots$ (grand canonical ensemble)

stability with respect to fluctuations of partial densities (necessary condition): $\det ||\partial^2 f / \partial n_i \partial n_j|| = (\partial \mu_N / \partial n_N)_{\{n_\alpha, T\}} (\partial \mu_\alpha / \partial n_\alpha)_{\{n_N, T\}} - (\partial \mu_N / \partial n_\alpha)_{\{n_N, T\}}^2 > 0$

Bose-Einstein condensation (BEC) in ideal boson gas

condition of BEC: $\mu = m \rightarrow T < T_{BEC}(n)$

 $n = \begin{cases} n_{id}(T,\mu), & T > T_{BEC}(n) \\ n_{id}(T,m) + n_{bc}, & T < T_{BEC}(n) \end{cases} \xrightarrow{\rightarrow \text{ equivalent to } \mu < \mu_{max} = m \text{ (boson mass)} \\ (n_{bc} - \text{ density of Bose-condensed particles} \end{cases}$

(T_{BFC} = threshold temperature of BEC)

 \rightarrow equivalent to $\mu < \mu_{max}$ = m (boson mass) with zero momenta)

$$n_{id}(T,\mu) = \frac{g}{(2\pi)^3} \int d^3p \left[\exp\left(\frac{\sqrt{m^2 + p^2} - \mu}{T}\right) - 1 \right]^{-1}$$

$$\rightarrow n_*(T) \equiv n_{id}(T,m) \simeq g \left(\frac{mT}{2\pi}\right)^{3/2} \zeta(3/2) \quad (T \ll m)$$
at $\mu \rightarrow m$ $(g$ - degeneracy factor, $\zeta(3/2) = \sum_{k=1}^{\infty} k^{-3/2} \simeq 2.612$)
$$\implies T_{BEC}(n) \simeq \frac{2\pi}{m} \left[\frac{n}{\zeta(3/2)g} \right]^{2/3} \propto n^{2/3}$$

$$\implies T_{BEC}(n) \simeq \frac{2\pi}{m} \left[\frac{n}{\zeta(3/2)g} \right]^{2/3} \propto n^{2/3}$$

interacting α -matter in mean-field approximation: $T_{BFC}(n_{\alpha})$ is the same as in ideal α -gas with density $n=n_{\alpha}$

Ideal α -N matter in chemical equilibrium

pressure:
$$p = p_N^{id}(T, \mu_N) + p_\alpha^{id}(T, \mu_\alpha)$$
 partial densities: $n_i = \partial p_i^{id} / \partial \mu_i$ $(i = N, \alpha)$
 $p_i^{id}(T, \mu_i) = \frac{g_i}{(2\pi)^3} \int d^3k \frac{k^2}{3E_i} \left[\exp\left(\frac{E_i - \mu_i}{T}\right) + \eta_i \right]^{-1}$ $(+ n_{bc} \text{ term for } i=\alpha \text{ at } T < T_{BEC})$
 $(E_i = \sqrt{m_i + k^2}, g_N = 4, g_\alpha = 1, \eta_N = 1, \eta_\alpha = -1)$
chemical equilibrium: $\mu_N = \mu_\alpha / 4 \rightarrow \text{isotherms } n_\alpha = n_\alpha (T, n_N)$
region of BEC states: $\mu_\alpha = m_\alpha \rightarrow \mu_N = m_\alpha / 4 \simeq m_N - B_0$
 $T < T_{BEC} \simeq \frac{2\pi}{m_\alpha} \left[\frac{n_\alpha}{\zeta(3/2)g_\alpha} \right]^{2/3}$ binding energy (per baryon)
of single α : $B_\alpha \simeq 7.1 \text{ MeV}$

10⁻⁸

10-7

10⁻⁶

10⁻⁵

 $n_N (fm^{-3})$

10-4

10⁻³

10⁻²

10⁻¹

$$n_N|_{T < T_{\rm BEC}} = g_N \left(\frac{m_N T}{2\pi}\right)^{3/2} \sum_{k=1}^{\infty} (-1)^{k+1} k^{-3/2} e^{-B_\alpha k/T}$$

 \rightarrow $n_{N}\,$ does not depend on n_{α} for BEC states

 $\implies n_{lpha} \gg n_N$ in the BEC region

One-component matter with mean-field interaction

(pure nucleon- or α - matter)

U = U(n) - mean-field potential (depends only on density n, w/o explicit dependence on T) shift of chemical potential $\mu = \widetilde{\mu} + U(n)$ with respect to the ideal gas $\widetilde{\mu} = \widetilde{\mu}(T, n)$ - equivalent chemical potential of ideal gas (determined from $n = n_{
m id}(T, \widetilde{\mu})$) pressure $p(T,\mu) = p_{id}(T,\widetilde{\mu}) + \Delta p(n)$ where $\Delta p(n) = nU(n) - \int_0^n dn_1 U(n_1)$ 'excess' pressure We use Skyrme-like parametrization: $U(n) = -2an + \frac{\gamma + 2}{\gamma + 1}bn^{\gamma + 1}$ parameters of interaction $a, b, \gamma > 0$ from fit of ground state (GS) at T=0 attraction short-range repulsion we compare the results for soft (γ =1/6) and hard (γ =1) repulsive interactions

[1] Satarov, Dmitriev, Mishustin, Phys. At. Nucl. 72 (2009) 1390 (iso-symmetric nuclear matter)
[2] Satarov et al, J. Phys. G 44 (2017) 125102 (pure α-matter)

Iso-symmetric nucleon matter with Skyrme interaction

we choose Skyrme parameters a_N, b_N by fitting GS properties of such matter at T=0:

binding energy per baryon $W_N \equiv m_N - \min(\varepsilon/n) = 15.9 \text{ MeV}$ \rightarrow equivalent to equilibrium (saturation) density $n = n_0 = 0.15 \text{ fm}^{-3}$ $p = 0, \ \mu = \mu_0 = 923 \text{ MeV}$

equations for
$$a_N, b_N$$
: $E_F(n_0) + U(n_0) = \mu_0, \ p = p_{id}(T = 0, n_0) + \Delta p(n_0)$

γ	$a_N \left({ m GeV fm}^3 ight)$	$b_N \left(\text{GeV fm}^{3+3\gamma} \right)$	$K_N({ m MeV})$	T_c (MeV) \sim	of critical point
1	0.40	2.05	372	21.3	ightarrow hard EoS
1/6	1.17	1.48	198	15.3	ightarrow soft EoS

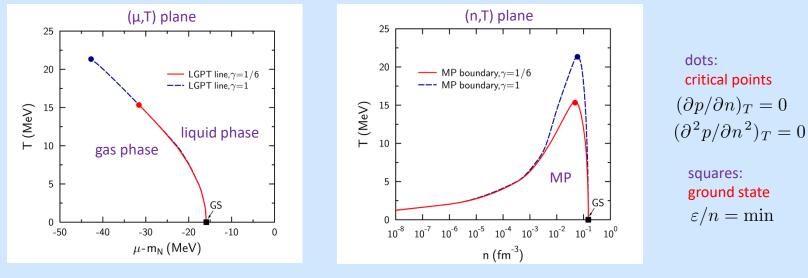
reasonable values of compressibility $K_N = 9(dp/dn)_{GS} = 200 - 240 \text{ MeV}$ for soft Skyrme repulsion (γ =1/6)

Phase diagram of iso-symmetric nucleon matter

first-order liquid-gas phase transition (LGPT) \rightarrow formation of mixed phase (MP) exists for any a_N , $b_N > 0$ at $T \leq T_{max} \equiv T_c$ with coexisting gas (n=n_g) and liquid (n=n_l) domains (n_g < n_l)

Gibbs conditions of phase equilibrium: $p(T, n_g) = p(T, n_l), \ \mu(T, n_g) = \mu(T, n_l)$

 \rightarrow boundaries of MP in (n,T) plane ('binodals')



temperature of critical point increases with γ

Pure α matter

Clark & Wong (1966) calculated characteristics of GS (T=0) using phenomenological $\alpha\alpha$ -potentials: binding energy per baryon $W_{\alpha} \simeq m_N - \min(\varepsilon_{\alpha}/n_B) \simeq 12 \text{ MeV}$ $(n_B=4n_{\alpha})$ density of GS $n_{\alpha} = n_{\alpha 0} \simeq 0.036 \text{ fm}^{-3}$ all α 's in GS are in BEC state with zero pressure using $\tilde{\mu}_{\alpha} = m_{\alpha} = 4(m_N - B_{\alpha}), \ p_{\alpha} = p_{\alpha}^{id} = 0$ one gets $\mu_{\alpha} = m_{\alpha} + U(n_{\alpha 0}) = 4(m_N - W_{\alpha}), \ \Delta p_{\alpha}(n_{\alpha 0}) = 0$ $\Longrightarrow a_{\alpha} = b_{\alpha}n_{\alpha 0}^{\gamma} = \frac{4(\gamma + 1)}{\gamma n_{\alpha 0}}(W_{\alpha} - B_{\alpha})$ (analytic relations for Skyrme parameters a_{α}, b_{α})

γ	$a_{\alpha} \left(\text{GeV fm}^3 \right)$	$b_{\alpha} \left(\text{GeV fm}^{3+3\gamma} \right)$	$K_{lpha}({ m MeV})$	$T_c({ m MeV})$
1	1.09	30.4	354	13.7
1/6	3.83	6.67	207	10.2

smaller critical temperatures as compared to nucleon matter (at t

Phase diagram of α matter

Satarov et al., J. Phys. G44 (2017) 125102 \rightarrow simultaneous description of LGPT and BEC in pure α matter condition of BEC: $\tilde{\mu}_{\alpha}(T, n_{\alpha}) = m_{\alpha} \to T_{\text{BEC}} \simeq \frac{2\pi}{m_{\alpha}} \left[\frac{n_{\alpha}}{\zeta(3/2) q_{\alpha}} \right]^{2/3}$ (in the MP region $n_{\alpha} \to n_{\alpha l}$) BEC boundary in the (n_{α}, T) plane is not sensitive to interaction (in the mean-field appr.) triple point (TP): crossing of BEC line with MP boundary $T_{\rm TP} \simeq 3.6 \,\,{\rm MeV}$ (for y=1/6, 1) we obtain phase diagrams similar to those observed for atomic ⁴He (μ,T) plane (n_B,T) plane 16 full dots: 14 LGPT line, $\gamma = 1/6$ 14 critical points MP boundary, $\gamma = 1/6$ --- BEC boundary, $\gamma = 1/6$ BEC boundary, $\gamma = 1/6$ 12 ---- LGPT line. $\gamma=1$ 12 open dots: BEC boundary, γ=1 T (MeV) 10 10 T (MeV) triple points 8 squares: 6 ground state 4 $\mu = \mu_{\alpha}/4$ BEC 2 GS GS $n_B = 4n_\alpha$ 0 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-8} -25 -20 -15 -10 -5 Λ μ -m_N (MeV) $n_{\rm B} \,({\rm fm}^{-3})$

region II (MP states with T<T_{TP}): gas domains w/o BEC + liquid domains with BEC

Skyrme-like interaction for α -N binary mixture

generalized Skyrme parametrization of excess pressure:

$$\Delta p(n_N, n_\alpha) = p - p_N^{id}(T, n_N) - p_\alpha^{id}(T, n_\alpha) = -\sum_{i,j} a_{ij} n_i n_j + \left(\sum_i B_i n_i\right)^{j+2} \quad (i, j=N, \alpha)$$

we assume $a_{ii}=a_i$, $B_i=b_i$ where a_i , b_i are Skyrme coefficients for one-component system of ith particles

$$\Delta p(n_N, n_\alpha) = -(a_N n_N^2 + 2a_{N\alpha} n_N n_\alpha + a_\alpha n_\alpha^2) + b_N (n_N + \xi n_\alpha)^{\gamma+2}$$

cross-term coefficient of attraction
$$\xi = (b_\alpha/b_N)^{1/(\gamma+2)} \simeq 2.01 \ (\gamma = 1/6), \ 2.46 \ (\gamma = 1)$$

excess free energy:

$$\Delta f(n_N, n_\alpha) = f - f_N^{id}(T, n_N) - f_\alpha^{id}(T, n_\alpha) = \int_0^1 \frac{d\lambda}{\lambda^2} \Delta p(\lambda n_N, \lambda n_\alpha) \to U_i \equiv \mu_i - \widetilde{\mu}_i = \frac{\partial \Delta f}{\partial n_i}$$

chemical potentials:

$$\mu_N = \widetilde{\mu}_N(T, n_N) - 2(a_N n_N + a_{N\alpha} n_\alpha) + \frac{\gamma + 2}{\gamma + 1} b_N (n_N + \xi n_\alpha)^{\gamma + 1}$$
$$\mu_\alpha = \widetilde{\mu}_\alpha(T, n_\alpha) - 2(a_{N\alpha} n_N + a_\alpha n_\alpha) + \frac{\gamma + 2}{\gamma + 1} b_N \xi (n_N + \xi n_\alpha)^{\gamma + 1}$$

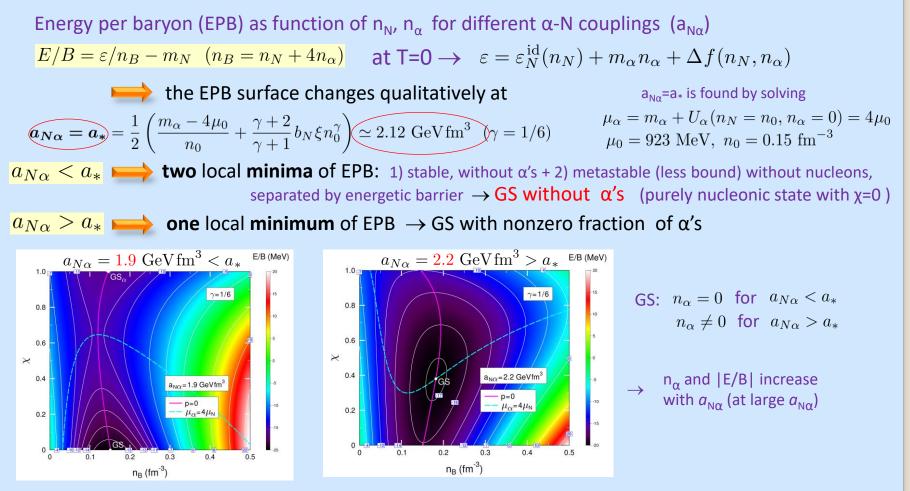
substituting into $\mu_N = \mu_{\alpha}/4 \rightarrow$ isotherms of chemical equilibrium in (n_N, n_{α}) plane

below we assume $\gamma = 1/6$ and study sensitivity of results to cross-term coefficient $a_{N\alpha}$

the only unknown model parameter

 $\sim \sim \pm 2$

Ground state of α -N matter at T=0



further on we assume that $a_{Nlpha} < a_{*}$

Choice of model parameters

Coefficients of Skyrme interactions:

γ	$a_N ({\rm GeV fm}^3)$	$b_N \left(\text{GeV fm}^{3.5} \right)$	$a_{\alpha} \left(\text{GeV fm}^3 \right)$	$b_{lpha} \left(\text{GeV fm}^{3.5} \right)$
1/6	1.17	1.48	3.83	6.67

The only unknown parameter $\implies a_{N\alpha}$ (coefficient of N α attraction)

We assume subcritical values: $a_{Nlpha} < a_* = 2.12 \ {
m GeV fm}^3$

To study sensitivity to $a_{N\alpha}$ we choose two options:

 $a_{N\alpha} = 1 \ {\rm GeV fm}^3$ (set A) and $a_{N\alpha} = 1.9 \ {\rm GeV fm}^3$ (set B)

Comparison with virial EoS (Horowitz et al., 2006) \rightarrow set B is preferrable

EoS of α -N matter (numerical scheme)

simultaneously solving the equations:

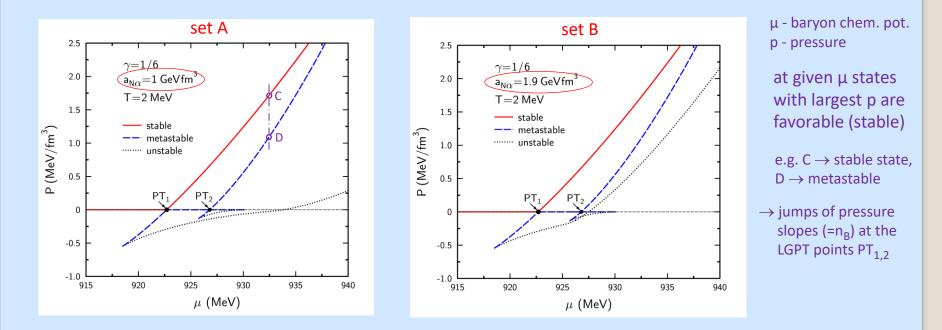
 $\mu_{N} = \tilde{\mu}_{N}(T, n_{N}) + U_{N}(n_{N}, n_{\alpha}) \qquad (U_{i} - \text{mean-filed potentials}, \tilde{\mu}_{i} - \text{chemical pot. of ideal gas, i=N,}\alpha)$ $\mu_{\alpha} = \tilde{\mu}_{\alpha} + U_{\alpha}(n_{N}, n_{\alpha}), \quad \tilde{\mu}_{\alpha} = \begin{cases} \tilde{\mu}_{\alpha}(T, n_{\alpha}), & n_{\alpha} < n_{*}(T) \\ m_{\alpha}, & n_{\alpha} > n_{*}(T) \end{cases} \rightarrow \text{outside BEC region} \qquad n_{*}(T) \equiv g_{\alpha} \left(\frac{m_{\alpha}T}{2\pi}\right)^{3/2} \zeta(3/2)$ $\mu_{N} = \mu_{\alpha}/4 \ (\equiv \mu) \rightarrow \text{condition of chemical equilibrium}$ we get $n_{N}, \ \mu, \ p = p_{N}^{\text{id}} + p_{\alpha}^{\text{id}} + \Delta p$ as functions of n_{α}, T isotherms in $(n_{N}, n_{\alpha}), \ (\mu, p)$ planes

in general, there are several solutions at given T: (in (μ ,p) plane) \rightarrow LGPT

- unstable (spinodal) states $(\det ||\partial^2 f / \partial n_i \partial n_j|| < 0)$
- stable/metastable states with larger/smaller pressure at the same μ using Gibbs conditions (for intersecting branches of $p(T, \mu)$)

 \implies we get two LGPTs: stable (with smaller fraction of α) and metastable

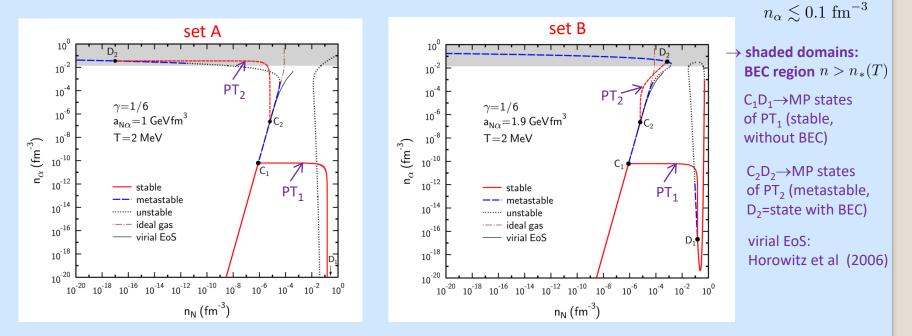
Interacting α -N matter: isotherms T=2 MeV in (μ ,p) plane



stable (PT_1) and metastable (PT_2) liquid-gas phase transitions (at T=2 MeV)

low sensitivity to $a_{N\alpha}$ in the (µ,p) plane

Isotherms T=2 MeV in (n_N, n_α) plane



suppression of α 's at large nucleon densities \rightarrow similar to Mott effect fractions of α 's are small (large) for stable (metastable) LGPT states with BEC are metastable

set B is preferable (closer to virial EoS as compared to set A)

Horowitz et al. (2006)

reasonable values:

Phase diagram of α -N matter (stable states)

		T_{CP} (MeV)	$n_{BCP} \ (\mathrm{fm}^{-3})$	χ_{CP}	
Characteristics of critical point (CP):	set A	15.4	4.8·10 ⁻²	2.5·10 ⁻⁴	
	set B	14.7	5.3·10 ⁻²	6.9·10 ⁻²	$\left \begin{array}{c} (\partial \end{array} \right $

(µ,T) plane (n_B,T) plane 20 20 stable PT stable PT 16 16 set B set B CP CP T (MeV) T (MeV) 12 12 liquid phase 8 8 MP gas phase 4 4 GS GS 0 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10⁻⁸ -20 -10 0 10 -40 -30 μ -m_N (MeV) $n_B (fm^{-3})$

→ found from $(\partial p/\partial n_B)_T = 0$ $(\partial^2 p/\partial n_B^2)_T = 0$

squares: ground state (GS) $T=0, \ arepsilon/n_B=\min$

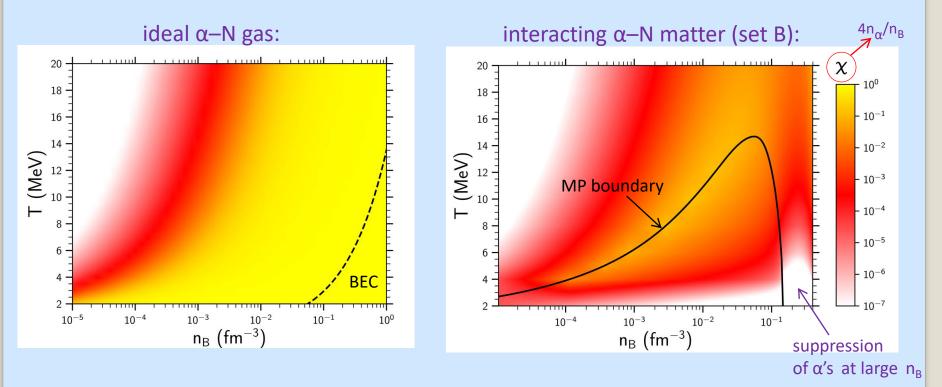
parameters of GS coincide with those for pure nucleon matter (χ =0):

$$\mu = m_N - 15.9 \text{ MeV}$$

 $n_B = 0.15 \text{ fm}^{-3}$

position of critical point (CP) only slightly changes with a_{Nlpha}

Fraction of α in (n_B,T) plane (stable states)



strong influence of interaction: non-monotonic density behavior of X
 maximum values of X (~10-20%) are reached near the left boundary of MP

(larger fractions can be achieved for metastable states)

Phase diagram of α -N matter (metastable states)

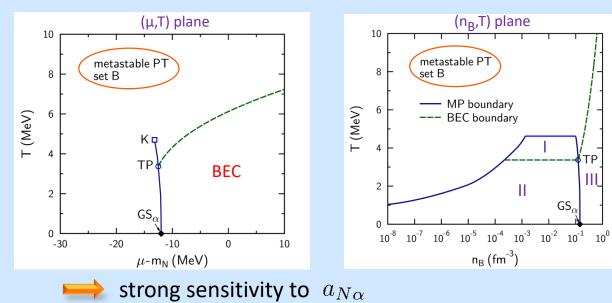
haracteristics		T_K (MeV)	$n_{BK} \ (\mathrm{fm}^{-3})$	χ_K	T_{TP} (MeV)
f metastable PT:	set A	7.6	(1.2-2.6)·10 ⁻²	0.14–1.0	3.5
/ 'remnant' of	set B	4.6	1.3 ·10 ⁻³ -0.1	0.46–0.86	3.4

LGPT in pure α -matter

cł

0

K – end point, TP – triple point (intersection of LGPT and BEC lines)



larger concentration of $\alpha 's~(\chi)$ as compared to stable LGPT

metastable LGPT disappears 'abruptly' at T=TK (with nonzero jump of n_B)

diamonds show GS of pure α -matter

Conclusions

- Simultaneous description of LGPT and BEC in mean-field model
- Strong sensitivity of results to αN attractive strength
- Two first-order phase transitions (stable and metastable) are found for iso-symmetric matter
- Strong suppression of α -cluster abundance at large nucleon densities
- States with α condensate are metastable

Outlook

- We are going to study the role of α -clusters in asymmetric (neutron star) matter
- Search for metastable LGPT and BEC in heavy-ion collisions: select events with larger fraction of $\alpha \prime s$

Phase diagram of α -N matter (supercritical $a_{N\alpha}$)

(n_R,T) plane (μ,T) plane squares: 20 20 ground state (GS) $a_{N\alpha} = 2.2 \text{ GeV fm}^3$ $a_{N\alpha} = 2.2 \text{ GeV fm}$ $n_B \simeq 0.18 \text{ fm}^{-3}$ 16 16 LGPT GPT line $\chi = 4n_{\alpha}/n_B \simeq 38\%$ BEC line BEC boundary BEC line (ideal gas) T (MeV) 12 T (MeV) BEC (ideal gas) 12 $E/B \simeq 17.2 \text{ MeV}$ 8 $\mu = m_{\alpha}/4$ LGPT full circles: critical point (CP) 4 4 BEC $T \simeq 15.8 \text{ MeV}$ LGPT+BEC 0 $n_B \simeq 0.051 \text{ fm}^{-3}$ 10^{-10} 10⁻² 900 910 920 930 940 950 10⁻⁸ 10⁻⁶ 10^{-4} 1 μ (MeV) $\chi \simeq 21\%$ $n_B (fm^{-3})$

one stable LGPT + stable BEC states (shaded regions) are predicted

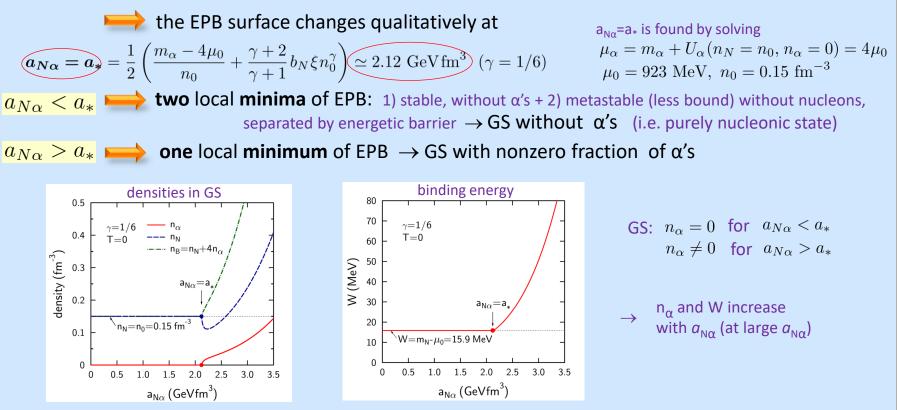
nonzero fraction of α 's in ground state

 $a_{N\alpha}$ >2.12 GeV fm³

Ground state of α -N matter at T=0

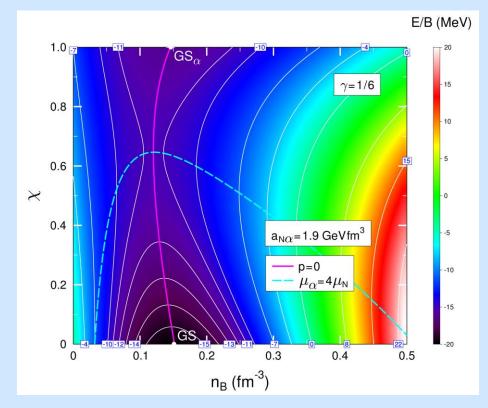
we calculate energy per baryon (EPB) as function of n_N , n_α for different couplings $a_{N\alpha}$

 $E/B = \varepsilon/n_B - m_N \ (n_B = n_N + 4n_\alpha) \quad \text{at T=0} \to \ \varepsilon = \varepsilon_N^{id}(n_N) + m_\alpha n_\alpha + \Delta f(n_N, n_\alpha)$



Contours of binding energy in (n_B, X) plane (T=0, set B)

binding energy per baryon of cold α -N matter $E/B = \varepsilon/n_B - m_N$



 $\chi = 4n_{\alpha}/n_B$

→ two local minima of E/B:

true GS (absolute minimum) $\frac{E}{B} = -15.9 \text{ MeV}, \quad n_B = 0.15 \text{ fm}^{-3}, \quad \chi = 0$

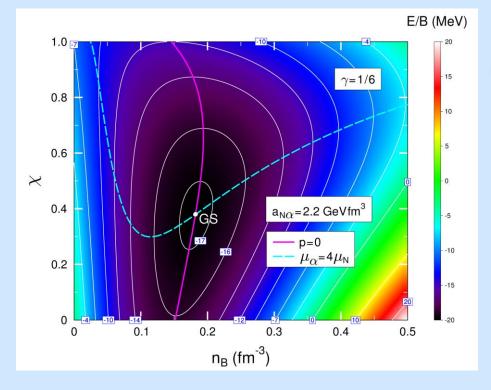
subthreshold case

 $a_{N\alpha} = 1.9 \text{ GeV fm}^3 < a_*$

and metastable GS_{α} (shallower minimum) $\frac{E}{B} = -12 \text{ MeV}, \quad n_B = 0.144 \text{ fm}^{-3}, \quad \chi = 1$

the line μ_{α} =4 μ_{N} corresponds to energetic barrier (E/B=max), separating two minima of E/B

Contours of binding energy (T=0, $a_{N\alpha} = 2.2 \text{ GeV fm}^3$) above threshold a_*



qualitatively different E/B surface with single local minimum:

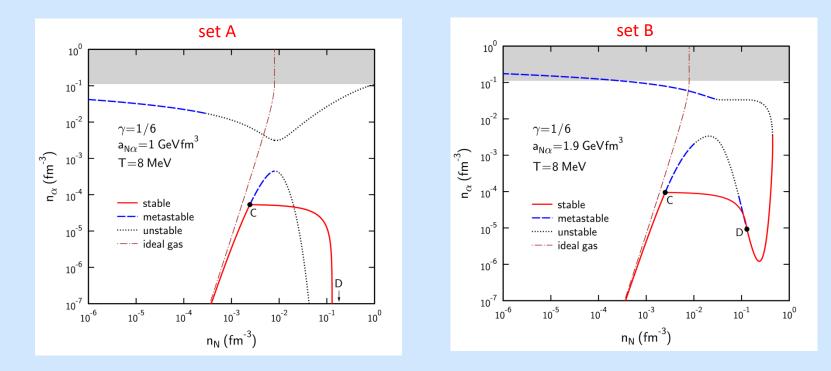
 $\frac{E}{B} \simeq -17.2 \text{ MeV}, \quad n_B \simeq 0.18 \text{ fm}^{-3}, \quad \chi \simeq 0.38$

this new GS is stronger bound and has nonzero α fraction as compared to normal nuclear matter

the condition μ_{α} =4 μ_{N} holds along the line E/B=min

Presumably, subthreshold values $a_{N\alpha} < a_* \simeq 2.12 \text{ GeV fm}^3$ are more reasonable

Isotherms T=8 MeV in (n_N, n_α) plane



only one (stable) LGPT is predicted for T=8 MeV