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Neutrino Oscillations
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Neutrino oscillations

I Source producing neutrinos of certain flavor – e.g. νµ
I Detector (at certain distance) observes reduction in the flux of neutrinos of

the produced flavor
⇒ Neutrino disappearance: νµ −→ νµ

I Detector observes increase in the flux of neutrinos of different flavors from
the one produced
⇒ Neutrino appearance: νµ −→ νe

I Each flavor state να is a superposition of mass states νi (ν mixing)
I The (dis)appearance of ν has an oscillatory pattern as a function of

distance/energy ⇒ neutrino oscillations
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Neutrino oscillations and neutrino mixing
νe
νµ
ντ

 = UPMNS

ν1
ν2
ν3


= R(θ23) · R(θ13, δCP) · R(θ12)

ν1
ν2
ν3


I Similar to CKM mixing, still very

different (UPMNS, small ν masses)
I ν mixing – up to 9 parameters,
ν oscillations – 6 parameters:

θ12, θ13, θ23, δCP,∆m2
21,∆m2

31

ν oscillations open questions

Mass hierarchy (ordering)?
Is θ23 = 45◦ or >,<?
Is there a CPV in lepton sector?

NH = NO = normal hierarchy (ordering)
IH = IO = inverted hierarchy (ordering)
Phys.Lett.B 782(2018), pp.633-640
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The NOvA Experiment
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The NOvA experiment

I NOvA is a long-baseline neutrino
oscillation experiment

I NuMI νµ 700 kW beam, ν/ν̄ modes
I Two functionally identical detectors,

14.6 mrad off-axis, 810 km apart
Physics interests:
I νµ disappearance: sin2 2θ23, |∆m2

32|
I νe appearance: sin2 θ23, ∆m2

32, δCP

I NC: 3ν model tests, sterile ν
I Xsecs physics
I Supernovae, multi-µ, monopoles,
ν magnetic moments, LDM...
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νe + ν̄e bi-event plot (prediction)

I Predicted event counts of νe and ν̄e
vary due to oscillation parameters
(possible CP violation) and matter
effect (affecting νe and ν̄e differently)

I NOvA has the longest baseline of
experiments with artificial ν sources,
consequent matter effect has an impact
of up to ca ±30% of νe events

I Ellipses are drawn as a function of δCP
for normal and inverted neutrino mass
ordering and for upper (> 45◦) and
lower (< 45◦) octant of θ23
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Fermilab NuMI beam

2018 analysis collected exposure:
neutrino: 8.85× 1020 POT of 14 kton equivalent

antineutrino: 6.91× 1020 POT (to Apr 2018)
I Since Jan 2017 at designed 700 kW

(> 18 ×1018 protons/week) – the
most powerful neutrino beam

I 120 GeV protons from the Main
Injector at Fermilab in 10 µs spills

I Magnetic focusing horns allow
selection of charge sign of
secondary particles (π,K ), thus
effectively selecting a neutrino or
antineutrino beam

8 / 46



NOvA detectors

I Two functionally identical detectors, 810 km apart –
Near (ND) and Far (FD) detector

I FD on the surface, ND more than 90 m underground
I Consist of extruded plastic cells with alternating vertical and

horizontal orientation for 3D reconstruction
I Filled with liquid scintillator, tracking calorimeter with 65%

active mass (FD 14 kton, ND 0.3 kton)
I More than 344 000 (FD) and 20 000 (ND) readout channels
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Off-axis concept

I Both detectors 14.6 mrad off the
NuMI beam axis

I Narrowing the energy spectrum
around the oscillation maximum
(∼2 GeV)

I Reducing backgrounds with broad
energy distributions

I Reducing contamination of
wrong-sign neutrinos

I ν̄ cross-section about 3× lower
than for ν
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NOvA Analysis Features
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NOvA event topologies
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NOvA νµ event
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Classification of neutrino interactions
I Pioneering the use of CNN (Convolutional Neural Networks) for particle

classification in neutrino physics
I CVN = Convolutional Visual Network treats every interaction in the detector

as an image with cells being pixels and collected charge being their color,
extracting basic “features” from the data

I INPUT: calibrated 2D pixelmaps; OUTPUT: multi-label classifier based on
final state particle multiplicities

I Used in all main analyses (νµ, νe and NC) together with additional
supporting PIDs (separate νµ/νe cosmic rejection, muon reconstructed track)

I CVN trained separately for neutrinos and antineutrinos, included cosmic data
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Energy reconstruction

νµ energy

Eνµ = Eµ + Ehad

I νµ energy as a sum of µ and
hadronic energy

I µ energy estimated from the length
of the track

I Hadronic energy from calorimetric
reconstruction

νe energy

Eνe = quadratic func. of EEM and Ehad

I Both energies reconstructed
calorimetrically

I EM shower (EM “prong”) identified
with a single-prong CVN variant

I Remaining activity is accounted for
hadronic energy
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Data-driven predictions
I The neutrino spectra is measured in ND before oscillations, this is a

combination of neutrino flux, cross section and efficiency
I The measured spectra are used to make predictions of observations in FD

using the Far/Near (F/N) ratio, i.e. adjusting FD MC
I Due to similar functionality of both detectors, this technique largely cancels

the flux and cross section systematic uncertainties

ND νµ −→ FD νµ sample
ND νµ −→ FD νe signal

ND νe −→ FD νe background
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2018 ν + ν̄ Oscillation Analysis
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νµ + ν̄µ disappearance analysis
Near detector data

I Selected νµ and ν̄µ charged current
events in ND

I Wrong sign contamination in ND is
estimated to be 3% for ν and 11% for ν̄
beam

I The data is split in 4 equal populations
(quantiles) of hadronic energy fraction
as a function of reconstructed energy

I Energy resolution varies from 5.8%
(5.5%) to 11.7% (10.8%) for ν (ν̄)
beam, better for lower hadronic energy
fractions

I Most background appears in quantiles
with higher hadronic energy fraction
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νµ + ν̄µ disappearance analysis
Far detector data

ν

ν̄

I Selection efficiency 31.2% (33.9%) and purity
98.6% (98.8%) for νµ (ν̄µ) CC

I F/N ratio applied seperately for each quantile
I Cosmic background rate is estimated from the

timing sidebands of NuMI beam triggers and
cosmic trigger data

Observed 113 νµ CC events
Exp. 730+38

−49(syst)± 27(stat) w/o osc.
Total bkg. 11.0 events
ν̄µ NC other beam bkg. cosmic

7.24 1.19 0.51 2.07

Observed 65 ν̄µ CC events
Exp. 266+12

−14(syst)± 16(stat) w/o osc.
Total bkg. 13.7 events
νµ NC other beam bkg. cosmic

12.58 0.39 0.23 0.46
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νe + ν̄e appearance analysis
Near detector data

I Split into regions of low and high PID
(CVN score)

I Used to predict FD appeared νe
background

I ν beam background components
constrained:

1. beam νe share the common parents
with νµ – νe content can be
estimated by constraining π and K
from contained and uncontained
samples of νµ

2. νµ component using Michel electrons
3. remaining data/MC discrepancy is

accounted for NC interactions
I ν̄ beam components scaled evenly to

match the data
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νe + ν̄e appearance analysis
Far detector data

ν

ν̄

I ND νe data used to predict FD νe
background, each component propagated
independently in energy and particle ID bins

I Peripheral sample with less stringent
containment and high particle ID, usually not
fully contained events

I > 4σ evidence of ν̄e appearance in ν̄µ beam

Observed 58 νe CC events
Exp. 30 (π/2 IH) to 75 (3π/2 NH)
Total bkg. 15.1 events
ν̄e beam νe νµ ντ NC cosmic

0.66 6.85 0.63 0.37 3.21 3.33

Observed 18 ν̄e CC events
Exp. 10 (3π/2 NH) to 22 (π/2 IH)
Total bkg. 5.3 events
νe beam νe νµ ντ NC cosmic

1.13 2.57 0.07 0.15 0.67 0.71
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2018 Constraints on Oscillation Parameters
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νe + ν̄e bi-event plot (data)

I All the constraints to be shown are from joint ν + ν̄ and νµ + νe fit
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θ23 and ∆m2
32 with NOvA’s friends

I 90% C.L. region is consistent with other experiments
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δCP and θ23

I Joint ν + ν̄, νµ + νe fit
I Prefers non-maximal θ23 at 1.8σ,

disfavors lower θ23 octant
I Prefers NH for all δCP at 1.8σ
I Disfavors δCP = π/2 in IH

Best fit:
Normal hierarchy, δCP = 0.17π
sin2 θ23 = 0.58± 0.03 (upper octant)
∆m2

32 = 2.51+0.12
−0.08 × 10−3 eV2
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Future Prospects and Summary
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Future prospects
Mass hierarchy determination

I Expect to extend running until 2024 with accelerator upgrades and an equal
total exposure in both ν and ν̄ beam modes

I Based on projected 2018 analysis techniques
I Possible 3σ sensitivity to hierarchy by 2020 in case of favorable true values of

parameters (NH + δCP = 3π/2)
I 3σ for 30-50% of all δCP values by 2024 otherwise
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In progress

I 2019 top up analysis with 12.33× 1020 POT (additional ∼ 5.4× 1020 POT,
+75%) antineutrino data finishing soon

I ν + ν̄ paper in preparation
I Test beam program running to study detector response in detail and get

potential analysis improvements – systematics reduction, validation and
training of reconstruction or machine learning algorithms, simulation
improvements

I Beam switched back to neutrino mode, expecting about additional
5-6×1020 POT of neutrino data for 2020

I Plans of improvements for 2020 analysis
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Summary

I First antineutrino data from NOvA (6.91 ×1020 POT) has been analyzed
together with neutrino data (8.85 ×1020 POT)

I Neutrino data results published: Phys. Rev. D 98, 032012
I NOvA observes > 4σ evidence for ν̄e appearance in ν̄µ beam
I Joint νe + νµ analysis of complete ν + ν̄ datasets

I sin2 θ23 = 0.58± 0.03,∆m2
32 = 2.51+0.12

−0.08 × 10−3 eV2

I Prefers normal hierarchy at 1.8σ and disfavors inverted hierarchy for
δCP = 3π/2 at > 3σ

I Rejects maximal mixing at 1.8σ and the lower octant at a similar level
I Expect running up to 2024 with equal total exposure in both ν and ν̄ beam

modes
I NOvA can reach 3σ sensitivity for the mass hierarchy by 2020 in the most

favorable case (NH, δCP = 3π/2) and cover more than 30% of all values of
δCP by 2024
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Thank you for your attention
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BACKUPS
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Backups
θ23 and ∆m2

32

I Joint ν + ν̄, νµ + νe fit
I Prefers non-maximal θ23 at 1.8σ,

disfavors lower θ23 octant
Best fit:

sin2 θ23 = 0.58± 0.03 (upper octant)
∆m2

32 = 2.51+0.12
−0.08 × 10−3 eV2
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Backups
Octant θ23 and δCP

I Based on projected 2018 analysis techniques
I Depending on the true values of parameters about 3σ sensitivity to θ23 by

2024 (both orderings, all δCP)
I 2+ σ sensitivity to CP violation in case of δCP = π/2 or 3π/2 by 2024
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Backups
νe systematics
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Backups
Joint fit systematics
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Backups
νµ quantiles
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Backups
νµ resolution binning
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Backups
CVN distributions
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Backups
Classification of neutrino interactions
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Backups
νe peripheral sample

I Events failing the “core” selection
can pass a BDT cut plus a tight
CVN cut
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Backups
Data-driven checks of CVN

I In ND remove µ track and replace
with simulated electron in both
data and MC

ν ν̄
Data eff. 65.0% 67.7%
MC eff. 66.7% 68.6%
Diff. +2.6% +1.2%

I In FD isolate the bremsstrahlung
showers in cosmic rays data and
MC to create a control sample
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Backups
Wron-sign fraction cross check
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Backups
Neutrino interaction tuning

I Tuning done independently for ν and ν̄
beam samples

I Correct quasielastic (QE) component to
account for effect of long-range nuclear
correlations using model of ValÃĺncia group
via work of R. Gran (MINERvA)
[https://arxiv.org/abs/1705.02932]

I Apply same long-range effect as for QE to
resonant (RES) baryon production.

I Nonresonant inelastic scattering (DIS) at
high invariant mass (W >1.7 GeV/c2)
weighted up 10% based on NOvA data
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Backups
Neutrino interaction tuning

I Introduce custom tuning of GENIE
”Empirical MEC” [T. Katori, AIP Conf.
Proc. 1663, 030001 (2015)] based on
NOvA ND data to account for
multinucleon knockout (2p2h)

I Shape uncertainty on the NOvA 2p2h
tune is established by re-fitting using
variation of the model with correlated
systematic shifts to QE and RES

I The MINERvA collaborationâĂŹs tuning
to their data resulted in similar shape
features to our assumed uncertainties
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Backups
Cross section ratio
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Backups
2018 NuMI beam performance

I Running since 2013
I Since Jan 2017 at designed 700 kW (> 18 ×1018 protons delivered/week) –

the most powerful neutrino beam
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