Results on Neutrino and Antineutrino Oscillations from the NOvA Experiment

New Trends in High-Energy Physics 2019 Ukraine, Odessa

Tomas Nosek (for the NOvA Collaboration)

Charles University, Institute of Particle and Nuclear Physics

May 14, 2019

Outline

- 1. Neutrino oscillations phenomenon in standard 3ν model
- 2. The NOvA experiment
- 3. Features of NOvA ν_{μ} and ν_{e} analysis
- 4. 2018 analysis observations
- 5. 2018 constraints on oscillation parameters
- 6. Future prospects, progress and summary

Neutrino Oscillations

Neutrino oscillations

• Source producing neutrinos of certain flavor – e.g. ν_{μ}

 Detector (at certain distance) observes reduction in the flux of neutrinos of the produced flavor

- \Rightarrow Neutrino disappearance: $\nu_{\mu} \longrightarrow \nu_{\mu}$
- Detector observes increase in the flux of neutrinos of different flavors from the one produced
 - \Rightarrow Neutrino appearance: $\nu_{\mu} \longrightarrow \nu_{e}$
- Each flavor state ν_{α} is a superposition of mass states ν_i (ν mixing)
- The (dis)appearance of *v* has an oscillatory pattern as a function of distance/energy ⇒ neutrino oscillations

Neutrino oscillations and neutrino mixing

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$(\nu_{1}$$

$$= R(\theta_{23}) \cdot R(\theta_{13}, \delta_{\rm CP}) \cdot R(\theta_{12}) \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Similar to CKM mixing, still very different (U_{PMNS}, small ν masses)
- $\nu \text{ mixing up to 9 parameters,}$ $\nu \text{ oscillations - 6 parameters:}$ $\theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP}, \Delta m_{21}^2, \Delta m_{31}^2$

NH = NO = normal hierarchy (ordering)IH = IO = inverted hierarchy (ordering)Phys.Lett.B 782(2018), pp.633-640

parameter	best fit $\pm 1\sigma$	3σ range	
$\Delta m_{21}^2 \ [10^{-5} { m eV}^2]$	$7.55^{+0.20}_{-0.16}$	7.05-8.14	
$\frac{ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}}{ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}}$	$2.50{\pm}0.03\\2.42{}^{+0.03}_{-0.04}$	$2.41 – 2.60 \\ 2.31 - 2.51$	1
$\sin^2 \theta_{12} / 10^{-1}$	$3.20\substack{+0.20\\-0.16}$	2.73 - 3.79	
$\frac{\sin^2 \theta_{23}/10^{-1}}{\sin^2 \theta_{23}/10^{-1}} (\text{IO})$	$\begin{array}{c} 5.47\substack{+0.20\\-0.30}\\ 5.51\substack{+0.18\\-0.30}\end{array}$	$\substack{4.45-5.99\\4.53-5.98}$	
$\frac{\sin^2 \theta_{13}/10^{-2} \text{ (NO)}}{\sin^2 \theta_{13}/10^{-2} \text{ (IO)}}$	$2.160\substack{+0.083\\-0.069}\\2.220\substack{+0.074\\-0.076}$	$\begin{array}{c} 1.96 – 2.41 \\ 1.99 – 2.44 \end{array}$	2
$\frac{\delta}{\pi} (\text{NO})$ $\frac{\delta}{\pi} (\text{IO})$	${}^{1.32\substack{+0.21\\-0.15}}_{1.56\substack{+0.13\\-0.15}}$	$\substack{0.87-1.94\\1.12-1.94}$	

4 / 46

 v_{2}

The NOvA Experiment

The NOvA experiment

- NOvA is a long-baseline neutrino oscillation experiment
- ▶ NuMI ν_{μ} 700 kW beam, $\nu/\bar{\nu}$ modes
- Two functionally identical detectors, 14.6 mrad off-axis, 810 km apart

Physics interests:

- ν_{μ} disappearance: $\sin^2 2\theta_{23}$, $|\Delta m^2_{32}|$
- ν_e appearance: $\sin^2 \theta_{23}$, Δm_{32}^2 , $\delta_{\rm CP}$
- NC: 3ν model tests, sterile ν
- Xsecs physics
- Supernovae, multi-μ, monopoles,
 ν magnetic moments, LDM...

$u_e + \bar{\nu}_e$ bi-event plot (prediction)

- Predicted event counts of v_e and v
 _e vary due to oscillation parameters (possible CP violation) and matter effect (affecting v_e and v
 _e differently)
- NOvA has the longest baseline of experiments with artificial ν sources, consequent matter effect has an impact of up to ca ±30% of ν_e events
- Ellipses are drawn as a function of $\delta_{\rm CP}$ for normal and inverted neutrino mass ordering and for upper (> 45°) and lower (< 45°) octant of θ_{23}

Fermilab NuMI beam

2018 analysis collected exposure:

- Since Jan 2017 at designed 700 kW (> 18 ×10¹⁸ protons/week) – the most powerful neutrino beam
- 120 GeV protons from the Main Injector at Fermilab in 10 μs spills
- Magnetic focusing horns allow selection of charge sign of secondary particles (π, K), thus effectively selecting a neutrino or antineutrino beam

NOvA detectors

- ▶ FD on the surface, ND more than 90 m underground
- Consist of extruded plastic cells with alternating vertical and horizontal orientation for 3D reconstruction
- Filled with liquid scintillator, tracking calorimeter with 65% active mass (FD 14 kton, ND 0.3 kton)
- ▶ More than 344 000 (FD) and 20 000 (ND) readout channels

Off-axis concept

- Both detectors 14.6 mrad off the NuMI beam axis
- Narrowing the energy spectrum around the oscillation maximum (~2 GeV)
- Reducing backgrounds with broad energy distributions
- Reducing contamination of wrong-sign neutrinos
- $\blacktriangleright~\bar{\nu}$ cross-section about 3× lower than for ν

NOvA Analysis Features

NOvA event topologies

NOvA ν_{μ} event

Classification of neutrino interactions

- Pioneering the use of CNN (Convolutional Neural Networks) for particle classification in neutrino physics
- CVN = Convolutional Visual Network treats every interaction in the detector as an image with cells being pixels and collected charge being their color, extracting basic "features" from the data
- INPUT: calibrated 2D pixelmaps; OUTPUT: multi-label classifier based on final state particle multiplicities
- ► Used in all main analyses (ν_μ, ν_e and NC) together with additional supporting PIDs (separate ν_μ/ν_e cosmic rejection, muon reconstructed track)
- ▶ CVN trained separately for neutrinos and antineutrinos, included cosmic data

Energy reconstruction

 $E_{\nu_{\mu}} = E_{\mu} + E_{\text{had}}$

- ν_µ energy as a sum of µ and hadronic energy
- μ energy estimated from the length of the track
- ► Hadronic energy from calorimetric reconstruction

ν_e energy

 $E_{
u_e} = {
m quadratic} \; {
m func.} \; {
m of} \; {m E_{
m EM}} \; {
m and} \; {m E_{
m had}}$

- Both energies reconstructed calorimetrically
- EM shower (EM "prong") identified with a single-prong CVN variant
- Remaining activity is accounted for hadronic energy

Data-driven predictions

- ► The neutrino spectra is measured in ND before oscillations, this is a combination of neutrino flux, cross section and efficiency
- The measured spectra are used to make predictions of observations in FD using the Far/Near (F/N) ratio, i.e. adjusting FD MC
- Due to similar functionality of both detectors, this technique largely cancels the flux and cross section systematic uncertainties

2018 $\nu + \bar{\nu}$ Oscillation Analysis

$u_{\mu} + \bar{\nu}_{\mu}$ disappearance analysis

- Selected ν_{μ} and $\bar{\nu}_{\mu}$ charged current events in ND
- \blacktriangleright Wrong sign contamination in ND is estimated to be 3% for ν and 11% for $\bar{\nu}$ beam
- The data is split in 4 equal populations (quantiles) of hadronic energy fraction as a function of reconstructed energy
- Energy resolution varies from 5.8% (5.5%) to 11.7% (10.8%) for ν ($\bar{\nu}$) beam, better for lower hadronic energy fractions
- Most background appears in quantiles with higher hadronic energy fraction

$u_{\mu} + \bar{\nu}_{\mu}$ disappearance analysis

- Selection efficiency 31.2% (33.9%) and purity 98.6% (98.8%) for ν_{μ} ($\bar{\nu}_{\mu}$) CC
- \blacktriangleright F/N ratio applied seperately for each quantile
- Cosmic background rate is estimated from the timing sidebands of NuMI beam triggers and cosmic trigger data

Observed 113 $ u_{\mu}$ CC events				
Exp. 730^{+38}_{-49} (syst) ± 27 (stat) w/o osc.				
Total bkg. 11.0 events				
$\bar{\nu}_{\mu}$	NC	other beam bkg.	cosmic	
7.24	1.19	0.51	2.07	

Observed 65 $ar{ u}_{\mu}$ CC events				
Exp. 266^{+12}_{-14} (syst) ± 16 (stat) w/o osc.				
Total bkg. 13.7 events				
ν_{μ}	NC	other beam bkg.	cosmic	
12.58	0.39	0.23	0.46	

$\nu_e + \bar{\nu}_e$ appearance analysis

Near detector data

- Split into regions of low and high PID (CVN score)
- ► Used to predict FD appeared v_e background
- ν beam background components constrained:
 - 1. beam ν_e share the common parents with $\nu_{\mu} - \nu_e$ content can be estimated by constraining π and Kfrom contained and uncontained samples of ν_{μ}
 - **2.** ν_{μ} component using Michel electrons
 - **3.** remaining data/MC discrepancy is accounted for NC interactions
- $\bar{\nu}$ beam components scaled evenly to match the data

$\nu_e + \bar{\nu}_e$ appearance analysis

Far detector data

- ND v_e data used to predict FD v_e background, each component propagated independently in energy and particle ID bins
- Peripheral sample with less stringent containment and high particle ID, usually not fully contained events
- $\blacktriangleright \ > 4\sigma$ evidence of $\bar{\nu}_e$ appearance in $\bar{\nu}_\mu$ beam

Observed 58 $ u_e$ CC events					
Exp. 30 ($\pi/2$ IH) to 75 ($3\pi/2$ NH)					
Total bkg. 15.1 events					
$\bar{\nu}_e$	beam ν_e	ν_{μ}	ν_{τ}	NC	cosmic
0.66	6.85	0.63	0.37	3.21	3.33

Observed 18 $ar{ u}_e$ CC events					
Exp. 10 (3 π /2 NH) to 22 (π /2 IH)					
Total bkg. 5.3 events					
ν_e	beam ν_e	ν_{μ}	ν_{τ}	NC	cosmic
1.13	2.57	0.07	0.15	0.67	0.71
					21/4

2018 Constraints on Oscillation Parameters

θ_{23} and Δm^2_{32} with NOvA's friends

▶ 90% C.L. region is consistent with other experiments

- Joint $\nu + \bar{\nu}$, $\nu_{\mu} + \nu_{e}$ fit
- Prefers non-maximal θ₂₃ at 1.8σ, disfavors lower θ₂₃ octant
- \blacktriangleright Prefers NH for all $\delta_{\rm CP}$ at 1.8σ
- ▶ Disfavors $\delta_{\rm CP} = \pi/2$ in IH

Best fit:

Normal hierarchy, $\delta_{\rm CP} = 0.17\pi$ $\sin^2 \theta_{23} = 0.58 \pm 0.03$ (upper octant) $\Delta m_{32}^2 = 2.51^{+0.12}_{-0.08} \times 10^{-3} \text{ eV}^2$

Future Prospects and Summary

Future prospects

Mass hierarchy determination

- Expect to extend running until 2024 with accelerator upgrades and an equal total exposure in both ν and $\bar{\nu}$ beam modes
- Based on projected 2018 analysis techniques
 - Possible 3σ sensitivity to hierarchy by 2020 in case of favorable true values of parameters (NH + δ_{CP} = 3π/2)
 - 3σ for 30-50% of all $\delta_{\rm CP}$ values by 2024 otherwise

In progress

- ▶ 2019 top up analysis with 12.33×10^{20} POT (additional $\sim 5.4 \times 10^{20}$ POT, +75%) antineutrino data finishing soon
- ▶ $\nu + \bar{\nu}$ paper in preparation
- Test beam program running to study detector response in detail and get potential analysis improvements – systematics reduction, validation and training of reconstruction or machine learning algorithms, simulation improvements
- Beam switched back to neutrino mode, expecting about additional 5-6×10²⁰ POT of neutrino data for 2020
- ▶ Plans of improvements for 2020 analysis

Summary

- ► First antineutrino data from NOvA (6.91 ×10²⁰ POT) has been analyzed together with neutrino data (8.85 ×10²⁰ POT)
- ▶ Neutrino data results published: Phys. Rev. D 98, 032012
- ▶ NOvA observes > 4 σ evidence for $\bar{\nu}_e$ appearance in $\bar{\nu}_\mu$ beam
- ▶ Joint $\nu_e + \nu_\mu$ analysis of complete $\nu + \bar{\nu}$ datasets
 - $\sin^2 \theta_{23} = 0.58 \pm 0.03, \Delta m_{32}^2 = 2.51^{+0.12}_{-0.08} \times 10^{-3} \text{ eV}^2$
 - ▶ Prefers normal hierarchy at 1.8 σ and disfavors inverted hierarchy for $\delta_{\rm CP} = 3\pi/2$ at $> 3\sigma$
 - Rejects maximal mixing at 1.8σ and the lower octant at a similar level
- \blacktriangleright Expect running up to 2024 with equal total exposure in both ν and $\bar{\nu}$ beam modes
- ► NOvA can reach 3σ sensitivity for the mass hierarchy by 2020 in the most favorable case (NH, $\delta_{\rm CP} = 3\pi/2$) and cover more than 30% of all values of $\delta_{\rm CP}$ by 2024

Thank you for your attention

BACKUPS

 θ_{23} and Δm_{32}^2

Preliminary

Octant θ_{23} and δ_{CP}

Based on projected 2018 analysis techniques

- Depending on the true values of parameters about 3σ sensitivity to θ_{23} by 2024 (both orderings, all δ_{CP})
- 2+ σ sensitivity to CP violation in case of $\delta_{\rm CP} = \pi/2$ or $3\pi/2$ by 2024

 ν_e systematics

34 / 46

Joint fit systematics

 ν_{μ} quantiles

 ν_{μ} resolution binning

CVN distributions

Classification of neutrino interactions

 ν_e peripheral sample

 Events failing the "core" selection can pass a BDT cut plus a tight CVN cut

Data-driven checks of CVN

In ND remove μ track and replace with simulated electron in both data and MC

 In FD isolate the bremsstrahlung showers in cosmic rays data and MC to create a control sample

Brem shower

Wron-sign fraction cross check

Neutrino interaction tuning

- \blacktriangleright Tuning done independently for ν and $\bar{\nu}$ beam samples
- Correct quasielastic (QE) component to account for effect of long-range nuclear correlations using model of ValÃÍncia group via work of R. Gran (MINERvA) [https://arxiv.org/abs/1705.02932]
- Apply same long-range effect as for QE to resonant (RES) baryon production.
- Nonresonant inelastic scattering (DIS) at high invariant mass (W >1.7 GeV/c²) weighted up 10% based on NOvA data

Neutrino interaction tuning

- Introduce custom tuning of GENIE "Empirical MEC" [T. Katori, AIP Conf. Proc. 1663, 030001 (2015)] based on NOvA ND data to account for multinucleon knockout (2p2h)
- Shape uncertainty on the NOvA 2p2h tune is established by re-fitting using variation of the model with correlated systematic shifts to QE and RES
- The MINERvA collaborationâĂŹs tuning to their data resulted in similar shape features to our assumed uncertainties

Cross section ratio

MINERvA, Phys.Rev. D95 (2017) no.7, 072009

2018 NuMI beam performance

► Running since 2013

Since Jan 2017 at designed 700 kW (> 18 ×10¹⁸ protons delivered/week) – the most powerful neutrino beam