

(日)

STATUS OF THE MUSE EXPERIMENT

Dr. Tigran Armand Rostomyan*

New Trends in High-Energy Physics May 12 – 18, 2019 Odessa, Ukraine

*Supported by the US National Science Foundation grants 1614938 (MUSE Collaborative research) and 1614456

PROTON RADIUS PUZZLE

The proton radius puzzle = Reduced size of the proton obtained with Muonic Hydrogen Spectroscopy (First released \rightarrow 2010)

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

POSSIBLE REASONS

• The μp (spectroscopy) result is wrong

Discussion about theory and extracting the proton radius from muonic Lamb shift measurement

• The ep (spectroscopy) results are wrong

Accuracy of individual Lamb shift measurements? Rydberg constant could be off by 5σ

• The ep (scattering) results are wrong

Fit procedures not good enough Q^2 not low enough, structures in the form factors

Proton structure issues in theory

Off-shell proton in two-photon exchange, leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep

• Physics beyond Standard Model differentiating μ and e

Lepton universality violation, light massive gauge boson Constrains on new physics: e.g. from Kaon decays

STATUS OF THE PROTON RADIUS PUZZLE

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

MUSE COLLABORATION

\sim 63 MUSE collaborators from 24 institutions in 5 countries:

A. Afanasev^a, A. Akmal^b, J. Arrington^c, H. Atac^d, C. Ayerbe-Gayoso^e, F. Benmokhtar^f, N. Bermouna^b,
N. Bern^b, J.C. Bernauer^a, E. Brash^h, W.J. Briscoe^a, T. Caoⁱ, D. Ciofi^a, E. Cline^j, D. Cohn^k, E.O. Cohenⁱ,
C. Collicott^a, K. Deiters^m, J. Diefenbachⁿ, B. Dongwi^j, E.J. Downie^a, L. El Fassi^o, S. Gilad^g, R. Gilman^j,
K. Gnanvo^p, R. Gothe^a, D. Higinbotham^r, Y. Ilieva^a, M. Jones^r, N. Kalantariansⁱ, M. Kohlⁱ, B. Krusche^a,
G. Kumbartzki ^j, I. Lavrukhin^a, L. Li^a, J. Lichtenstadt^j, W. Linⁱ, A. Liyanage^j, N. Liyanage^p, W. Lorenzon^t,
Z.-E. Meziani^d, P. Monaghan^h, K.E. Mesick^u, P. Mohan Murthy^g, J. Nazeerⁱ, T. O'Connor^c, C. Perdrisat^e,
E. Piasetzsky^j, R. Ransome ^j, R. Raymond^t, D. Reggiani^m, P.E. Reimer^e, A. Richter^v, G. Ron^k,
T. Rostomyan^j, A. Sarty^w, Y. Shamai^l, N. Sparveris^d, S. Strauch^q, V. Sulkosky^p, A.S. Tadepalli ^j,

Funded by 5 Agencies

Technical Design Report: arXiv:1709.09753 [physics.ins-det]

^aGeorge Washington University, ^bMontgomery College, ^cArgonne National Lab, ^dTemple University, ^eCollege of William & Mary, ^f Duquesne University, ^gMassachusetts Institute of Technology, ^hChristopher Newport University, ⁱHampton University, ^jRutgers University, ^kHebrew University of Jerusalem, ^ITel Aviv University, ^mPaul Scherrer Institut, ⁿJohannes Gutenberg-Universität, ^oOld Dominion University, ^pUniversity of Virginia, ^qUniversity of South Carolina, ^rJefferson Lab, ^sUniversity of Basel, ¹University of Michigan, ^uLos Alamos National Laboratory, ^vTechnical University of Darmstadt, ^wSt. Mary's University, ^xWeizmann Institute (Oct. 2016)

Dr. Tigran Armand Rostomyan* Status of the MUSE experiment

PAUL SCHERRER INSTITUT, VILLIGEN, SWITZERLAND

- X-ray laser: SwissFEL
- Synchrotron: Swiss Light Source (SLS), with 2.4 GeV photons
- Proton accelerator: World's most powerful 590 MeV Proton beam (2.2 mA, 1.3 MW beam, 50.6 MHz RF frequency)
 - $e^{\pm}, \mu^{\pm}, \pi^{\pm}$ in Secondary beam-lines
 - Particle species are separated by timing relative to beam RF

$\pi M1$ Experimental Area

Beam Momenta (Gev/c)	0.115; 0.153; 0.210
Q^2 range for Electrons (Gev ²)	0.0016 - 0.0820
Q ² range for Muons (Gev ²)	0.0016 - 0.0799

P, MeV/c	Polarity	e, %	μ, %	π, %
115	+	96.7	2.1	0.9
153	+	63.0	12.0	25.0
210	+	12.1	8.0	79.9
115	-	98.5	0.9	0.6
153	-	89.9	3.2	6.8
210	-	47.0	4.0	49.0

FIGURE: Beam composition

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

$\pi M1$ and MUSE

$R_{ ho}$ (fm)	Electrons	Muons
Spectroscopy	0.8758 ± 0.0077	0.8409 ± 0.0004
Scattering	0.8751 ± 0.0061	???

- Simultaneous measurement of e^-p ; μ^-p and e^+p ; μ^+p elastic scattering reactions at 3 different beam momenta: 115 MeV/c, 153 MeV/c, 210 MeV/c in $\pi M1$ area at PSI:
 - Simultaneous determination of the Proton Radius in both ep and μp scatterings
 - Oirect comparison of *ep* and *µp* scatterings at sub-percent level precision

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Test of Lepton universality
- Determination of TPE effects

ERROR ESTIMATIONS

FIGURE: Estimated statistical uncertainties for $\mu^+ \rho$ elastic scattering cross sections, after background subtraction, and including experimental inefficiencies. Each point corresponds to a 5° bin in scattering angle.

A (B) > A (B) > A (B) >

DETECTOR SETUP

- Liquid hydrogen target
- TIMING: Beam-Hodoscope planes (BH) + Scattered Particle Scintillators (SPS) + Beam Monitor (BM)
 - TOF for scattered and unscattered particles, for reaction ID

 $\sigma_{ au}$ \leq 100*ps*; ϵ \geq 99%

PID of Beam-line particles

 $\sigma_{ au}$ \leq 150*ps*; ϵ \geq 99%

- Beam Momentum determination
- TRACKING: GEMs + Straw-Tube Tracker (STT) or BM

< 日 > < 回 > < 回 > < 回 > < 回 > <

LIQUID HYDROGEN TARGET

- Construction by U.Mich., PSI, CREARE
- Safety review passed (PSI; Aug.2018)

Meets requirements!

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

MUON DECAY AND MOELLER

Simulations (USC)

 Muon Decays in flight can be removed with TOF measurements

 Moeller/Bhabba events can be effectively suppressed with BM acting as a Moeller-VETO

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KEY REQUIREMENTS: TIMING

• Beam-particle and reaction identification

BEAM HODOSCOPE (BH) PLANES

5 BH-Planes built 2 mm thick x 100 mm long x 4&8 mm wide BC404 + + Hamamatsu S13360-3075PE

Status of the MUSE experiment

BH PLANES

- Extensively prototyped
- 5 BH-Planes built at PSI
- Exceed requirements!

BEAM MONITOR (BM)

- 3 mm x 12 mm x 300 mm BC404 + S13360-3075PE
- 6 mm shifted 2 planes: 16 paddles per plane + 4 front bars
- All paddles: σ_{T} < 100*ps* (Best: σ_{T} = 59*ps*); $\epsilon \ge$ 99.9%

Meets requirements!

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

SCATTERED PARTICLE SCINTILLATOR (SPS)

- Based on CLAS12 FTOF12 system, built at USC
- 2 planes on each side of beam, all 4 walls complete
- 92 bars, double-ended readout

- Peak: particles going through the bar
- Low energy tail: particles going out the side of the bar

- 220 cm BC404 bars:
 - $\sigma_{av.} = 52ps \pm 4ps$
- 120 cm BC404 bars: $\sigma_{av.} = 46ps \pm 4ps$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

 2-plane coincidence € ≥ 99.5% for all particles, except for e⁺ (€ ~ 99.0%)

Meets requirements!

TOF

2 TOF measurements (1 BH-Plane \rightarrow SPS) with 50 cm difference in detector spacing, compared to Geant4 (Horizontal scale has arbitrary offset)

TRACKING DETECTORS: GEMS

Dr. Tigran Armand Rostomyan* Status of the MUSE experiment

<ロ> <同> <同> < 同> < 同> < 同> < □> <

э

TRACKING DETECTORS: GEMS

- Set of 3x 10cm x 10cm GEM detectors built for OLYMPUS
- Telescope gaps reduced to 8.5 cm
- Gas mixture: Ar:CO2 70:30
- APV cards arranged in-plane
- New digitizer module (MPD v4)

- 70 μm (100 μm) spatial resolution
- € = 97 99% (98.0%)
- Successful operation of New DAQ:
 - Readout time 0.5 ms with new system (0.9 ms in 2015; Goal is: 0.15 ms)
 - Up to 2 kHz, 32-bit block transfer (BLT) (Goal is to reach up to 3 kHz)

Parameter	Requirements	Achieved
Spatial Resolution	$100 \mu m$ / element	√ 70µm
Efficiency	98%	√ > 98%
Positioning	≈ 0.1 mm, ≈ 0.2 mr	Not attempted; easy
Rate Capability	3.3 MHz / plane	🗸 5 MHz / plane
Readout Speed	3 kHz	2 kHz;
		Will be achieved
		with New VME crates

Meets requirements!

VETO DETECTOR (UNI. SOUTH CAROLINA)

- Annular 8-element VETO detector, surrounding target entrance window
- Eliminate upstream scattering and beam decays
- $\sigma_T \leq 200 \text{ ps}$ (Goal was: 1 ns); $\epsilon > 99.0\%$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Meets requirements!

STRAW TUBE TRACKER (STT)

- Based on PANDA STT-design
- Built at HUJI, Temple
- 2 chambers, 5 planes each in x and y
- In total 2850 Straws
- Before: Readout → PADIWA/TRB3
- New Readout → PASTTREC/TRB3

Parameter	Requirements Achieved	
Spatial Resolution	$150 \mu m/$	√ < 120µm
Efficiency	99.8% tracking	\approx 99%; moderate
Positioning	≈ 0.1 mm, ≈ 0.2 mr in θ	Not attempted; moderate
Positioning	$50 \mu m$ wire spacing	Not attempted; moderate
Rate Capability	0.5 MHz	Not attempted; easy

STRAW TUBE TRACKER (STT)

• STT all planes are ready, wire mapping in process

Dr. Tigran Armand Rostomyan*

< 日 > < 回 > < 回 > < 回 > < 回 > <

э

Status of the MUSE experiment

SUMMARY OF DETECTORS

Detector	$\sigma_{T}(ps) / \sigma_{S}(\mu m)$	E (%)	Material Thickness
1 BH Plane	\sim 70 ps	\sim 70 ps $>$ 99.5 $ $ 2 m	
2-4 BH Planes	50 – 35 ps	> 99.5	4 – 8 mm BC404
GEMs	70 µ <i>m</i>	pprox 98	0.5% Radiation Length
VETO	pprox 200 ps	> 99	4 mm BC404
BM	59 ps	pprox 99.9	3 mm BC404
STT	120 <i>µm</i>	pprox 99	30 μ <i>m</i> mylar
SPS	55	> 99	3 – 6 cm BC404

While some improvements, testing remains, data shows that all requirements are met!!!

(日)

MUSE TRIGGER (RUTGERS)

MUSE DAQ (GWU & MONTGOMERY COLLEGE)

- 3000 TDC and 500 ADC channels
- MESYTEC MCFD-16-fast for Timing
- MESYTEC MQDC-32 mostly for timing correction and detector monitoring
- TRB3 FPGA-based Readout

TRACKING

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

MUSE

MUSE suited to verify 5.6σ effect (CODATA 2014) with even higher significance:

- Proton Charge radius extraction limited by systematics, fit uncertainties
- Uncertainties mostly well controlled: largest from angle and radiative corrections
- Many uncertainties are common to all extractions in the experiment and cancel in (*pe*⁺)/(*pe*⁻), (*pμ*⁺)/(*pμ*⁻) and (*p* + *e*)/(*p* + *μ*) comparisons
- Compare $p + e^{\pm}$ and $p + \mu^{\pm}$ Scattering Cross-sections for TPE. Charge average to determine TPE to 0.01 fm
- Individual radius extractions from $p + e^{\pm}$, $p + \mu^{\pm}$ each to 0.01 fm
- From $(p + e)/(p + \mu)$ Cross-section ratios: extract $R_e R_\mu$ radius difference with minimal truncation error to 0.005 fm $R_e R_\mu = 0.034 \pm 0.006$ fm (5.6 σ), MUSE: $\delta_r = 0.005$ fm ($\sim 7\sigma$)
- If no difference, extract Proton radius to 0.007 fm (2nd-order fit)

MUSE TIME-LINE

- 2011: Ron Gilman & Michael Kohl came up with an idea
- 2012: MUSE presented to PSI BVR 43, and every BVR thereafter
- 2014: Conditional physics approval from PSI
- 2014: First R & D funding from NSF & DOE
- 2016: Full construction funding from NSF (award Sep. 15th)
- 2018:August: Installation and dress rehearsal at PSI
- 2018:December: $MUSE \rightarrow First Scattering Data$
- 2019-2020: Data taking: 6 months / year
- 2020-2022: Data Analysis and Publications.

SUMMARY

- NSF, DOE, BSF, PSI, Uni-Basel fundings received
- MUSE will be the first muon scattering measurement with the required precision to address the Proton Radius Puzzle!

THANK YOU FOR YOUR ATTENTION!

ADDITIONAL SLIDES

Additional Slides

Dr. Tigran Armand Rostomyan* Status of the MUSE experiment

(日)

PHYS. MOTIVATION: PROTON RADIUS

Lepton – Nucleon Scattering:

[Carl E. Carlson, The Proton Radius Puzzle. arXiv:1502.05314v1]

Dr. Tigran Armand Rostomyan* Status of the MUSE experiment

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

FEYNMAN DIAGRAMS (L AND NL ORDER)

TPE is the largest theoretical uncertainty!

[A. V. Gramolin et al. A new event generator for the elastic scattering of charged leptons on protons. arXiv:1401.2959, 2014]

э.

TPE CORRECTION

Two Photon Exchange **(TPE)** is the next-to-leading order correction that depends on nucleon structure:

EFFECT OF THE TPE CORRECTION

[*] J. <u>Arrington</u>, W. <u>Melnitchouk</u> and J. A. <u>Tion</u>, Global analysis of proton elastic form factor data with two-photon exchange corrections, <u>PhysRev</u> C **76**, 035205 (2007)

PHYS. MOTIVATION: TPE

Differential *ep* cross section in next-to-leading order approximation:

TPE contribution can be determined from the ratio of elastic e^+p to e^-p cross sections:

$$R = \frac{\sigma(e^{+}p)}{\sigma(e^{-}p)} = \frac{\left(1 - \delta_{2\gamma} - \delta_{brem} + \delta_{even}\right)}{\left(1 + \delta_{2\gamma} + \delta_{brem} + \delta_{even}\right)} \approx 1 - 2 \frac{\delta_{2\gamma}}{1 + \delta_{even}}$$

If we know $\delta_{even}, \delta_{brem}$, then we can find $\delta_{2\gamma}!$

DETECTOR SETUP

Dr. Tigran Armand Rostomyan*

Status of the MUSE experiment

TABLE

- Rotating table
- Movable, with exact positions for TOF
- Retractable tracker
- Dedicated Alignment procedures are required

<ロ> <同> <同> < 同> < 同> < 同> 、

э

BH FINAL DESIGN

HAM. S13360–3075PE RADIATION TESTS RESULTS

(100mm x 4mm x 2mm) BC422 + S13360-3075PE

Irrad. time	V	l _{dark}	CFD	Eff.	RMS P. R.
0 h	55 V	\sim 1 μ A	20 mV	$99.1\%\pm0.1\%$	63 ps
5 h	55 V	\sim 140 μ A	20 mV	$99.4\%\pm0.1\%$	66 ps
10 h	55 V	\sim 235 μ A	20 mV	$99.4\%\pm0.1\%$	72 ps
15 h	55 V	\sim 287 μ A	20 mV	$99.4\%\pm0.1\%$	77 ps
15 h	56 V	\sim 430 μ A	20 mV	$99.2\%\pm0.1\%$	75 ps
2 m. later	55 V	\sim 153 μ A			

 $t \sim 46 kHz$ on (2mm x 2mm) detector

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

LIQUID HYDROGEN TARGET

- Construction by U.Mich., PSI, CREARE
- Safety review passed (PSI; Aug.2018)

FIG. 21. A schematic view of the target ladder.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >