

Production of light (anti-)nuclei and exotica states in ALICE

Manuel Colocci for the ALICE collaboration

University and INFN – Bologna (Italy)

Light (anti-)nuclei chart

Why studying light nuclei?

Lack of experimental data in pp collisions

- anti-deuterons at CERN ISR
- anti-³He and anti-tritons never observed in pp

Testing model predictions e.g. hadron coalescence

High interest in space-based experiments (AMS-02)

 \rightarrow primordial anti-matter and Dark Matter searches

Nuclei probe last-stage evolution of heavy-ion collisions

Search for strange matter

0.5 p₁ (GeV/c)

10[°]

c³/(GeV)²

E d³σ/dρ³ [μb c ਰ_

Nuclei formation mechanisms

Nuclei formation mechanisms

Thermal production Andronic et al, Nature 561 (2018) 321

Thermodynamic approach to particle production extensively used in heavy-ion physics

- Hadrons emitted from the interaction region at the transition temperature (T_c)
- Chemical freeze-out temperature (T_{ch})
- Abundances fixed at equilibrium and $\propto \exp(-m/T_{ch})$
 - \rightarrow strong sensitivity of nuclei (large m) to T_{ch}
- Nuclei are loosely bound objects ("snowballs in hell")
 - \rightarrow nuclei might dissociate in the hadronic phase and be re-formed later via coalescence

Coalescence Csernai and Kapusta, Phys. Rept. 131 (1986) 223 Nuclei form by merging of final-state nucleons which are close in phase space (x, p) after the kinetic freeze-out

ALICE experiment

ALICE experiment

Run 1 (2009-2013)	Run 2 (2015-2018)
pp 0.9, 2.76, 7, 8 TeV	pp 5.02, 13 TeV
p-Pb 5.02	p-Pb 5.02, 8.16 TeV
Pb-Pb 2.76 TeV	Pb-Pb 5.02 TeV Xe-Xe 5.44 TeV

ITS (|η|<0.9)

6 layers silicon detectors

Trigger, vertex, tracking, PID (dE/dx)

TPC (|n|<0.9)

Gas-filled cylindrical barrel, MWPC readout

Tracking, PID (dE/dx)

ZDC

TOF (|η|<0.9)

Multigap RPC PID (time-of-flight)

T0 (4.6<n<4.9 and -3.3<n<-3.0)

2 arrays of Cherenkov's (T0A, T0C)

Luminosity, vertex, event collision time

V0 (2.8<η<5.1 and -3.7<η<-1.7)

Forward arrays of scintillators (V0A and V0C)

Trigger, beam gas rejection, multiplicity, centrality

TPC+TOF: 6 anti-tritons and 10 ${}^{3}\overline{\text{He}}$ candidates \rightarrow first ever observation in pp

ITS: separation of primary and secondary nuclei (from material knock-out)

Deuterons, tritons and ³He ALICE, PRC 97 (2018) 024615 and their anti-nuclei in pp at LHC Run 1

Istituto Nazionale di Fisica I

ALICE

Deuterons, tritons and ³He ALICE, PRC 97 (2018) 024615 and their anti-nuclei in pp at LHC Run 1

Istituto Nazionale di Fisica N

ALICE

Pb-Pb

deuterons, ³He and ⁴He

Thermal model fit ALICE, PRC 97 (2018) 024615

Thermal model successfully reproduces particle yields in Pb-Pb at 2.76 TeV

different model implementations fit nuclei and even hypertriton

if only nuclei are fitted, the temperature is $154 \pm 4 \text{ MeV}$

> → hint for nuclei production at hadronization

THERMUS: Weaton et al. CPC 180 (2009) 84 GSI-Heidelberg: Andronic et al., Nature 561 (2018) 321 SHARE 3: Torrieri et al., CPC 185 (2014) 2056

Thermal model fit

For LHC Run 2, improved reconstruction and analysis technique reduced the uncertainties

Tensions with thermal model are larger

 → does the model need further tuning? Eigen
volume corrections, particle lists and BR, rescattering, S-matrix etc.

THERMUS: Weaton et al. CPC 180 (2009) 84 GSI-Heidelberg: Andronic et al., Nature 561 (2018) 321 SHARE 3: Torrieri et al., CPC 185 (2014) 2056

Blast-Wave model fit

ALICE, PRC 93 (2016) 024917

Blast-Wave (BW)

[Schnedermann, Sollfrank and Heinz, PRC 48 (1993) 2462] hydrodynamics-inspired model describing particle production assuming a radially expanding thermalized source

BW fits simultaneously $\pi,$ K, p and d, ³He

→ kinetic freeze-out conditions for nuclei identical to those of other light flavor hadrons

pp

Testing coalescence models

Coalescence parameter *B*₂

 B_A relates the formation of composite nuclei to the one of primary protons and neutrons through a simple power law

$$E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_\mathrm{p} \frac{\mathrm{d}^3 N_\mathrm{p}}{\mathrm{d} p_\mathrm{p}^3} \right)^A$$

where $p_{\rm p} = p_{\rm A}/A$

i.e. deuteron $\propto B_2 \times \text{proton}^2$

\rightarrow **B**₂ doesn't show **p**_T dependence, in agreement with simplest coalescence model:

Butler and Pearson, PR 129 (1963) 836 see also Csernai and Kapusta, PR 131 (1986) 223

- "point-like" particle-emitting source (i.e. hadronic emission region smaller than the nucleus size)
- no correlations in the proton and neutron momentum distributions

Testing coalescence models Multiplicity dependence of *B*₂

Coalescence probability suppressed with multiplicity by the increasing size of the hadronic emission region (quantified by HBT radii)

$$B_A \propto V^{1-A} \to B_2 \propto \frac{1}{V}$$

→ effect quantified in refined Coalescence models:

Scheibl and Heinz, PRC 59 (1999) 1585

$$B_2 = \frac{3 \pi^{3/2} \langle \mathcal{C}_d \rangle}{2 m_t \mathcal{R}_\perp^2(m_t) \mathcal{R}_{\parallel}(m_t)}$$

Blum et al., PRD 96 (2017) 103021

$$\frac{B_2}{\text{GeV}^2} \approx 0.068 \left(\left(\frac{R(p_t)}{1 \text{ fm}} \right)^2 + 2.6 \left(\frac{b_2}{3.2 \text{ fm}} \right)^2 \right)^{-\frac{3}{2}}$$

Looking to the sky

B₃ (B₂) at LHC can constrain secondary anti-nuclei flux near Earth induced by CRs interactions with interstellar matter (H, ³He mainly)

Essential for primordial anti-matter and Dark Matter searches

 \rightarrow CR anti-deuterons and anti-³He suggested as probe of DM annihilation

10⁻⁴

 10^{2}

prob(>= N events) [%]

10¹

 10^{0}

Manuel Colocci – New Trends in High-Energy Physics – Odessa (Ukraine) – 15 May 2019

10⁻³

 B_3 [GeV⁴]

10⁻²

Hypernuclei

Hypertriton

Hypertriton ($^{3}_{\Lambda}$ H) is the lightest strange nucleus (pnA)

- $^3_\Lambda H$ seen for the first time in 1952 in cosmic rays
- anti- $^{3}_{\Lambda}$ H first observed by the STAR experiment in 2010 Science 328 (2010) 58

B. R. not well known only few theoretical calculations available Kamada et al., PRC 57 (1998) 4

$(^{3}_{\Lambda}H)^{3}_{\Lambda}H$ identification in ALICE

$^{3}_{\Lambda} H$

m = 2.991 GeV

 $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$

$(^{3}_{\Lambda}H)^{3}_{\Lambda}H$ identification in ALICE

$^{3}_{\Lambda} H$

 $B_{\Lambda} = 0.13 \pm 0.05 \text{ MeV}$

³H lifetime

ALI-PREL-130195

- very small $B_{\Lambda}(130 \text{ keV})$ led to the hypothesis that the $^{3}_{\Lambda}H$ lifetime is slightly below the free Λ
- few theoretical predictions available
 - first one by Dalitz and Rayet (1966) $\rightarrow \tau$ range 239.5 255.5 ps
 - more recent by Congleton (1992) and Kamada (1998) $\rightarrow \tau$ range 232 256 ps

- higher ALICE accuracy can be reached in the near future

 \rightarrow latest 2018 Pb-Pb run is being analyzed and 3-body decay channel may also help

... few words about the upgrade ALTCE

ALICE has started a huge upgrade in preparation for LHC Run3 and Run4 \rightarrow expected Pb-Pb $\int \mathcal{L} = 10 \text{ nb}^{-1}$ at 50 kHz collision rate

Quantity	design	achieved			upgrade	
Year	(2004)	2010	2011	2015	2018	≥2021
Weeks in physics	-	4	3.5	2.5	3.5	-
Fill no. (best)		1541	2351	4720	7473	-
Beam energy $E[Z \text{ TeV}]$	7	3	.5	6.37	6.37	7
Pb beam energy $E[A \text{ TeV}]$	2.76	1.	38	2.51	2.51	2.76
Collision energy $\sqrt{s_{_{\rm NN}}}$ [TeV]	5.52	2.	51	5.02	5.02	5.52
Bunch intensity $N_b [10^8]$	0.7	1.22	1.07	2.0	2.2	1.8
No. of bunches k_b	592	137	338	518	733	1232
Pb norm. emittance $\epsilon_N [\mu m]$	1.5	2.	2.0	2.1	2.0	1.65
Pb bunch length σ_z m	0.08	0.07-0.1		0.08		
β^* [m]	0.5	3.5	1.0	0.8	0.5	0.5
Pb stored energy MJ/beam	3.8	0.65	1.9	8.6	13.3	21
Luminosity $L_{AA} [10^{27} cm^{-2} s^{-1}]$	1	0.03	0.5	3.6	6.1	7
NN luminosity $L_{\rm NN} [10^{30} {\rm cm}^{-2} {\rm s}^{-1}]$	43	1.3	22.	156	264	303
Integrated luminosity/experiment $[\mu b^{-1}]$	1000	9	160	433,585	900,1800	104
Int. NN lumi./expt. [pb^{-1}]	43	0.38	6.7	19,25.3	39,80	4.3×10^5

... few words about the upgrade

ALICE has started a huge upgrade in preparation for LHC Run3 and Run4 \rightarrow expected Pb-Pb $\int \mathcal{L} = 10 \text{ nb}^{-1}$ at 50 kHz collision rate

Possibility to investigate A=4 (anti-)hypernuclei and A=5 (anti)nuclei and improve accuracy for A=3 (hyper)nuclei

Conclusions

Unique tracking/PID capability of ALICE allows one to clearly identify light nuclei and anti-nuclei at the LHC energies

Thermal statistical model describes reasonably well not only hadrons but also loosely bound objects

Validity of hadron-coalescence models tested at LHC

→ it is clear now that we need refined models to fully account for observations

Valuable inputs (B_2 and B_3) for Astroparticle Physics provided

One of the most accurate ${}^{3}_{\Lambda}$ H lifetime measurement reported

Possibility to **look for rarer anti-nuclei signals** and to improve accuracy for A=3 (hyper)nuclei in the **future LHC runs**

Thanks for your attention

Backup

LHC runs

System	Year(s)	√s _{NN} (TeV)	L _{int}
Pb-Pb	2010-2011	2.76	~75 µb⁻¹
	2015	5.02	~250 µb⁻¹
	2018	5.02	~0.9 nb ⁻¹
Xe-Xe	2017	5.44	~0.3 µb⁻¹
p-Pb	2013	5.02	~15 nb ⁻¹
	2016	5.02, 8.16	~3 nb ⁻¹ , ~25 nb ⁻¹
рр	2009-2013	0.9, 2.76, 7, 8	~200 µb⁻¹, ~100 nb⁻¹, ~1.5 pb⁻¹, ~2.5 pb⁻¹
	2015,2017	5.02	~1.3 pb ⁻¹
	2015-2017	13	~25 pb ⁻¹

ALICE in Run 3 and Run 4

New Inner Tracking System (ITS)

- Complementary Metal-Oxide-Semiconductor (CMOS) Monolithic Active Pixel Sensor (MAPS) technology
- Improved resolution, less material, faster readout

New Muon Forward Tracker (MFT)

- CMOS Pixels, MAPS technology
- Vertex tracker at forward rapidity

New TPC Readout Chambers (ROCs)

- Gas Electron Multiplier (GEM) technology
- New electronics (SAMPA), continuous readout

New Fast Interaction Trigger detector (FIT) -----

- Centrality, event plane

FoCal proposal (Run 4)

Measure forward direct photons

Readout upgrade

TOF, TRD, MUON, ZDC, Calorimeters

Integrated Online-Offline system (O²)

- Record MB Pb-Pb data at 50 kHz

Still on coalescence

Bellini, Kalweit, arXiv:1807.05894v1 [hep-ph]

Thermal model expectations

A.Andronic, private communication, model described in Andronic *et al.*, PLB 697, 203 (2011) and references therein

Thermal model in STAR

More on BW in Pb-Pb

ALICE, EPJ. C77 (2017) 658

deuteron flow in Pb-Pb

deuteron/proton ratio

d/p higher for about a factor 2 in Pb-Pb w.r.t pp

d/p increases with multiplicity from pp to peripheral Pb-Pb

→ trend explained in Coalescence approaches as a result of enhanced nucleon multiplicity/density

thermal model predicts a flat ratio in central Pb-Pb \rightarrow work in progress for estimating correlation in uncertainties

Lower energies

ALICE, PRC 97 (2018) 024615

³He/p ratio

*p***_T spectra vs multiplicity (pp)**

ALICE, arXiv:1902.09290v1 [nucl-ex] 25 Feb 2019 submitted to PLB

Deuterons and ³He (p-Pb)

First multiplicity dependent results of (anti-)³He in p-Pb 2016 $\sqrt{s_{NN}}$ = 5.02 TeV data sample (x 5 available 2013 statistics)

Blast-Wave PRC 48 (1993) 2462

inspired hydrodynamic model describing lighter hadron spectra in p-Pb

 \rightarrow used for extrapolating deuteron spectra in the unmeasured low/high $p_{\rm T}$ regions

Testing Coalescence models Still on p_T dependence

when integrating over all multiplicities *B*₂ is observed to increase with *p*_T

result was reproduced by QCDinspired event generators (PYTHIA/EPOS) + coalescence-based afterburner model accounting for correlations between nucleons

Simple Coalescence

→ evolution of the primary proton spectra across multiplicity can also explain the result

→ no need to introduce hard scattering effects

B₂ (p-Pb and Pb-Pb)

B₃ (p-Pb and Pb-Pb)

Coalescence parameter **B**₃

\rightarrow First ever determination of B_3 of (anti-)³He and (anti-)tritons in pp collisions

Testing Blast-Wave model Deuteron mean transverse momentum <*p*_T>

Hardening of deuteron spectra with multiplicity observed, protons as well

<p_T> of deuterons and protons found to be compatible in p-Pb (only)

→ fully hydrodynamic-inspired approach (Blast-Wave) doesn't describe simultaneously nuclei and lighter hadrons production in pp and p-Pb

different scenario in Pb-Pb

BW fits concurrently d, ³He and π/K/p see ALICE Coll. PRC 93 (2015) 024917

Blast-Wave PRC 48 (1993) 2462: hydrodynamic-inspired model describing particle production assuming a radially expanding thermalized source

$^{3}_{\Lambda}$ H lifetime in ALICE

Fit to the corrected ${}^{3}_{\Lambda}$ H dN/d(ct) spectrum for estimating the lifetime N(t) = N(0) exp(-L/ $\beta\gamma$ c τ) where c τ = mLc/p

ALI-PREL-130174

$^{3}_{\Lambda}H$ spectra and yield

³_{**A**}H / ³He ratio

in good agreement with (equilibrium) thermal model prediction for Tch = 156 MeV such as GSI-Heildeberg model Andronic et al., Nature 561 (2018) 321

B₂

Blum et al., PRD 96 (2017) 103021

FIG. 1. Predicted flux of \bar{p} , \bar{d} , $\overline{{}^{3}\text{He}}$. AMS02 \bar{p} data are taken from Ref. [28]. AMS02 \bar{d} flux sensitivity (5-yr, 95% C.L.) in the kinetic energy range 2.5–4.7 GeV/nuc, as estimated in Ref. [11], is shown by solid line. AMS02 $\overline{{}^{3}\text{He}}$ flux sensitivity (5-yr, 95% C.L.), derived from the $\overline{{}^{3}\text{He}}$ /He estimate of Ref. [27], is shown by dashed line.

Rare CPT test provided

Mass difference nuclei/anti-nuclei constraints CPT symmetry in nucleon-nucleon interactions

 \rightarrow these tests *independently* verify each distinct prediction of CPT symmetry