Status and prospects of Higgs Physics at the LHC

Andrey Korytov University of Florida for ATLAS and CMS Collaborations

LHC luminosity delivered (per experiment)

Run 1	2010-2011	7 TeV	5 fb ⁻¹	
	2012	8 TeV	25 fb ⁻¹	
Run 2	2015	2015 13 TeV		
	2016		40 fb ⁻¹	
	2017		50 fb ⁻¹	
	2018		65 fb ⁻¹	
Run 3	2021-2023	14 TeV	300 fb ⁻¹	
HL-LHC	2026-2038	14 TeV	3000 fb ⁻¹	

Integrated luminosities shown are approximate (small differences between ATLAS and CMS)

In this short talk:

- Only a select set of recent results will be presented (many more interesting results are available and continue to come out)
- For simplicity, I will often select only either ATLAS or CMS results (results from ATLAS and CMS are always comparable)

h(125) production modes (pb)

	ggF	VBF	WH	ZH	bbH	ttH	tHq	tHW
8 TeV	19.5	1.60	0.70	0.42	0.20	0.13	0.019	0.0012
13 TeV	44.1	3.78	1.37	0.88	0.49	0.51	0.074	0.0029
ratio	2.3	2.4	2.0	2.1	2.5	3.9	3.9	2.4

h(125) production-decay modes

	bb	ww	ττ	СС	ZZ	γγ	Zγ	μμ	gg +
all	58%	21%	6.3%	2.9%	2.6%	0.23%	0.15%	0.022%	9%
leptonic		1.0%			0.012%		0.010%		

Event categorization

All analyses use event categorization, based on

- **decay final states** (e.g. H->ZZ->4I: 4e, 4μ, 2e2μ; H->ττ: ..., etc)
- quality of particles in the decay (e.g. photons)
- production mode tags (e.g. VBF-like jet pair, Z(II) for ZH, etc)

Different categories have different S/B ratios, which helps improve search sensitivities and measurement accuracies

Production mode tags help disentangle contributions of different production mechanisms

$H \rightarrow \gamma \gamma$

ATLAS-CONF-2018-028

Signal strength

$$\mu = 1.06 + 0.14_{-0.12} = 1.06 \pm 0.08 \text{ (stat.)} + 0.08_{-0.07} \text{ (exp.)} + 0.07_{-0.06} \text{ (theo.)}$$

Note: statistical, experimental syst, and theoretical syst uncertainties are already of the same scale!

Event Selection Strategy

- 2 "tight" high-p_T photons
- vertex: use recoiling charged particles, "pointing" of photons
- key observable: di-photon mass
- split events into exclusive categories:
 - di-jet/MET/e/µ tagged (VBF and VH like)
 - untagged events are further sorted into a number of classes based on the quality of photons

Backgrounds

entire background = fit of the m_{vv}-distribution

Analysis features to note

- fairly high event yield
- bad "effective" S/B-ratio: 1:10
- good mass resolution (instrumental): 1-2%

$H \rightarrow ZZ \rightarrow 4I$

CMS HIG-19-001

Event Selection Strategy

- **4 "tight" leptons** (4e, 4μ, 2e2μ)
- final key observables:
 - four-lepton mass is the key observable
 - ME-kinematic discriminant (+20% sensitivity)

Backgrounds

- **ZZ (dominant):** well calculable process (MC)
- reducible (WZ+jets, Z+jets, tt, WW+jets, ...): data-driven

Analysis features to note

- small event yield
- high S/B-ratio: >2:1 (best among all)
- most sensitive channel for H observation
- good mass resolution: 1-2%
- four-body decay, fully reconstructed: spin-parity
- on/off-shell production: indirect width

Signal strength = $0.94^{+0.07}_{-0.07}(stat.)^{+0.08}_{-0.07}(syst.)$ (with respect to SM)

Mass

H->ZZ->4l channel provides the most accurate measurement

- m(4I) distribution forms a narrow peak:
 - good muon/electron p_T resolution (detector design)
 - small systematics thanks to the tag-and-probe calibration technique
- per-event four-lepton invariant mass uncertainties are taken into account:
 - Events with well measured four-lepton mass get higher weight in the fit
- one lepton pair comes from mostly on-shell Z boson:
 - Z-boson mass constraint allows one to improve p_T measurements for two leptons in individual events
- Four-lepton configurations have different probabilities for ZZ and H->ZZ
 - ME-based discriminant reduces weight of ZZ background like events

Run 1	2016 dataset	H->ZZ->4I	Η->γγ	Combination
ATLAS+CMS 77+vv combo	ATLAS	124.79 <u>+</u> 0.37	124.93 ± 0.40	124.97 <u>+</u> 0.24
125.09 ± 0.24 GeV	CMS	125.26 \pm 0.21	125.4 <u>+</u> 0.3	
PRL 114 (2015) 191803		+ 0.20 ((syst) + 0.08]

HL-LHC: stat error will improve by a factor of 10: ~20 MeV need to improve systematics proportionally to about 0.01% – challenge!

Spin-parity from H->ZZ->4l

CMS HIG-18-002

Relative kinematics of four leptons are sensitive to J^P properties of H (parity of π^0 was assessed similarly from $\pi^0 \rightarrow \gamma * \gamma * \rightarrow 41$ decays)

Observation of H $\rightarrow \gamma \gamma$ excludes J=1 by the Yang-Landau theorem Pure J=2 states and pure non-SM J=0 states were excluded with Run 1 data

Studies of possible non-SM-like admixtures continue:

Most generic amplitude of spin 0 decay to two vector (V) particles: $A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}}q_1^2 + \kappa_2^{\text{VV}}q_2^2}{(\Lambda_1^{\text{VV}})^2}\right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu},$ $a_1 = 2 \text{ describes SM Higgs tree-level decays to ZZ (zero for H \to \gamma\gamma)}$ $a_2 \text{ is CP-even term; in SM, it is O(10^{-2}) for H \to ZZ due to loop-induced decays (lead term for H \to \gamma\gamma)}$ $a_3 \text{ is CP-odd and hence CP-violating term, present but unmeasurably tiny in SM (three-loop decays)}$

Experimental limits: 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 80.2 fb⁻¹ (13 TeV) $-0.14 < a_2/a_1 < 0.29$ $-0.18 < a_3/a_1 < 0.21$

Γ_H from off-shell to on-shell production CMS HIG-18-002

F(m) depends on:

- phase space for $H \rightarrow ZZ$
- partonic gg-luminosity
- Hgg coupling evolution with m_{H^*}
- tensor structure Hgg coupling

The picture gets more complicated due to interference with non-resonant $gg \rightarrow ZZ$

$H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow ZZ \rightarrow 2I2v$

$$\begin{array}{c} \mbox{5.1 fb}^{\mbox{-1}}\mbox{(7 TeV)}\mbox{+}19.7\mbox{ fb}^{\mbox{-1}}\mbox{(8 TeV)}\mbox{+}77.5\mbox{ fb}^{\mbox{-1}}\mbox{(13 TeV)} \\ \Gamma_{H}\mbox{(MeV)}\mbox{-}3.2^{+2.8}_{-2.2}\mbox{[}0.08\mbox{,}9.16\mbox{]} \\ \mbox{[95\% Conf. Interval]} \end{array}$$

SM Higgs $\Gamma_{\rm H}$ = 4.0 MeV

$H \rightarrow WW \rightarrow Ivv$

Event Selection Strategy

- two "tight" leptons (ee, μμ, eμ) + MET
- main discriminating observables:
 - transverse mass mт
 - $(0, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$ and
 - **m**_{II} di-lepton mass (tends to be small for $H \rightarrow WW$)_{ℓ} $m_T = \text{inv. mass of } (m_{\ell\ell}, p_T)_{\ell}$ **p**_T of sub-leading lepton (tends to be small for $H \rightarrow WW$ *

Higgs (spin=0) ==> small dilepton mass

Backgrounds (many!)

- **WW, tt, DY+jets, W+jets, Wy**: *data-driven*
- **ZW, ZZ:** from simulation

Analysis features to note

- fair signal event yield
- not-too-good "effective" S/B-ratio: 1:5
- poor mass resolution (neutrinos!): 15%

$H \rightarrow \tau\tau$: observed!

ATLAS: PRD 99 (2019) 072001 CMS: PLB 779 (2018) 283

Run 1 + Run 2 (2016)

ATLAS: Significance = 6.4σ Signal strength* $1.09^{+0.27}_{-0.26}$

CMS: 5.9 σ and 0.98 \pm 0.18

Event Selection Strategy

- di-tau candidates (eτ_h, μτ_h, eµ, ee, µµ, τ_hτ_h) + MET
- key observable: di-tau mass
- most-important event categories:
 - 2-jets (VBF-tag): usual reasons
 - Boosted (high $p_T(\tau\tau)$)
 - better di-tau mass resolution
 - better S/B for $gg \rightarrow H vs qq \rightarrow Z$

Backgrounds (many!)

- **Ζ→ττ, Ζ→ee, tt, W-jets, QCD:** from control regions
- di-bosons: from simulation

Analysis features to note

- small signal event yield
- poor "effective" S/B-ratio: 1:50
- Higgs boson "blip" is on the falling slope of the Z peak
- mass resolution (neutrinos!): 10% (τ_hτ_h) -- 20% (*ll*)

* ATLAS signal strength is for the 2016 data alone CMS – for Run 1 + Run 2 combination

H → bb: observed!

With Run 1 data included:

ATLAS: Significance = 5.4σ $\mu = 1.01 \pm 0.12(\text{stat.})^{+0.16}_{-0.15}(\text{syst.})$

5.6 σ and $1.04^{+0.20}_{-0.10}$

Event Selection Strategy

- Two b-tagged jets (QCD bkg is huge!!!)
- Target VH production
- split event further by p_T(V)
 - higher $p_T(V)$: better S:B, better δm_{bb}
- key observable:
 - MVA of many observables (m_{jj} is the most important)

Main backgrounds (many!)

- Vbb, V+jets, ttbar, single-top: from control regions
- di-boson: from simulation

Analysis features to note

- fair signal event yield: O(1000) events
- poor "effective" S/B-ratio = 1:20
- not-too-good mass resolution (jets): 10%

Note: the analysis becomes systematic-error dominant

CMS:

Search for $H \rightarrow \mu\mu$

ATLAS-CONF-2018-026

Event Selection Strategy

- 2 high-p_T muons
- key observable: di-muon mass

Backgrounds: *mostly DY, fit of the dimuon mass distribution*

Analysis features to note

Very small signal very bad "effective" S/B-ratio: ~1:150 good mass resolution: 1-2%

Upper limit on signal strength 2.1 Signal strength $\mu=0.1^{+1.0}_{-1.1}$

Optimistically, expect 3σ evidence in Run 3 (need further analysis optimization)

$H \rightarrow invisible search$

CMS HIG-17-023 (PLB)

In SM: B(H→inv) ~ 0.1%

Searches for H→inv probe BSM possibilities, e.g., Higgs boson decaying to DM particles

Production modes exploited are:

Run 2 (2016) limit: B(H→inv) < 0.20 at 90% CL

This allows one to set limits in the space of (DM mass, DM-nucleon cross section) for $m_{DM} < m_{H}/2$

Results are complementary to direct DM searches

pp → **ttH: observed!**

CMS: PRL 120 (2018) 231801 ATLAS: PLB 784 (2018) 173

Run 1 + Run 2 (2016)

CMS: Significance = 5.2σ Signal strength = $1.26^{+0.31}_{-0.26}$

ATLAS: 6.3σ and $1.32 \pm 0.28 \\ 0.26$

Very challenging search

- very few events are expected
- tt background is BAD: ttH : tt ~ 1 : 2,000
- all other Higgs production mechanisms (99%) must be suppressed as well

Search strategy:

- Make use of all main five Higgs decay modes
- Take into account b-jets from t->Wb
- Consider tt decays with 0, 1, 2 leptons in the final state
- Extensive use of MVA techniques

Search for $pp \rightarrow HH$

Current result:

- Di-Higgs cross section: σ (HH) < 6.7 x SM
- Higgs trilinear coupling: $-5 < \kappa_{\lambda} < 12.1$

HL-LHC projections (arXiv:1902.00134)

Combination of all Higgs analyses

$$\sigma(xx \to H) \cdot BR(H \to yy) \propto \frac{\Gamma_{xx} \cdot \Gamma_{yy}}{\Gamma_{TOT}}$$

One needs **9 independent parameters** to describe all currently relevant production & decay mechanisms

	gg->H	VBF	VH	ttH
ww				
ZZ				
bb				
ττ				
γγ				
μμ				
invisible				

$$\begin{bmatrix}
 F_{WW} \\
 F_{ZZ} \\
 F_{bb} \\
 F_{\tau\tau} \\
 F_{\gamma\gamma} (loop induced; W and t) \\
 F_{\mu\mu} \\
 F_{gg} (loop induced; t and some b) \\
 F_{tt} \\
 F_{TOT} (Or F_{TOT} = F_{WW} + F_{ZZ} + F_{bb} + ... + F_{inv/undetectable})$$

Combo: couplings

ATLAS-CONF-2019-005

Assuming no new particles/interactions,

- six relevant Higgs boson couplings to the SM particles are right on mark
- W, Z, t couplings are already constrained with an accuracy of 5-10%

Assuming SM-like tree-level couplings, measured effective couplings to two loop-induced couplings (Hgg, H $\gamma\gamma$) are consistent with the SM predictions

Summary

- Higgs boson mass is measured with better than 2 ppm accuracy
- Five Higgs decay modes are established: ZZ, WW, $\gamma\gamma$, $\tau\tau$, bb
- Four main production modes are established: ggF, VBF, VH, ttH
- No deviations from SM have been observed, but the search is on
 - Higgs boson is the most recent fundamental (?) particle discovered
 - It has a very special role in the SM
 - It is the only scalar particle in SM, and scalars are not particularly friendly entities in the quantum field theory