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Natural assumption: 
 

The laws of physics should be the same  
wherever in the Universe we are 

Cosmological principle: 
 
the Universe is isotropic and homogeneous 
at  large enough scales  

scale of homogeneity 

Starting from this scale the distribution  

of inhomogeneities (e.g. galaxies and groups of galaxies)   

should be statistically homogeneous 
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Scale of homogeneity ? 
 

A number of attempts to estimate this value in literature: 

 

End of XX-th century: 150-300 Mpc 

Recent fractal dimension analysis:       400 Mpc 

However, quite recently a number of much larger  

structures, with sizes up to 3 Gpc, were found. 

! 

Effective scales of 

observation/simulation 1.5-2 Gpc 


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Giant filament consisting of a number of superclusters 

The largest cosmic structures: 

Sloan Great Wall.  
9423Mpc 1.38 10 lyl   
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181pc 3 10 cm 3 ly  



Two groups of  Large Quasar Groups: 

Clowes-Campusano LQG 

and Huge LQG                
91226Mpc 4 10 lyl   

9613Mpc 2 10 lyl   

34 quasars (red crosses) 73 quasars (black rings) 
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Quasars:  active nuclei of galaxies (e.g. super BH) 



Great GRB Wall (Hercules-Corona-Borealis Great Wall) 

A region of the sky seen in the data set mapping of gamma-ray  

bursts (GRBs) that has been found to have an unusually  

higher concentration of similarly distanced GRBs than  

the expected average distribution 

93066Mpc 10 10 lyl   
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Burst of gamma-rays during supernova collapse  

or the merger of two neutron stars into a new BH 



The discovery of such superstructures raises 
a number of questions: 
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• Do these structures contradict the cosmological  
principle?  
 
• Does the upper limit on the superstructure size exist? 
  
• Can we predict this limit? 

The answers to these questions are interrelated: 

if the upper limit exists and the superstructures are within this limit,  

then their existence  does not contradict the cosmological principle.  

The homogeneity scale is simply greater than this limit. 



Newtonian mechanics : gravitating masses in Euclidian space 
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The Newtonian potential does not  contain any characteristic scale 

which could point to the upper limit of forming structures  ! 

Poisson eq. 
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Static empty background 

Upper limit on the superstructure size ? 
 

Gravitational interaction is responsible  
for the structure formation 

 



Cosmology: non-empty dynamical background ! 

Background FLRW metric: 

 2 2 2ds a d dx dx 

  

conformal time comoving spatial coordinate 

physical distance:  R ar

Background matter (averaged CDM:              ): 
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Non-empty background ! 



Cosmological background is perturbed  

by the inhomogeneities (e.g. in the form of galaxies) 

   2 2 21 12 2ds a d dx dx 

        

gravitational potential 
 

1 

Perturbed Einstein equations: 
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We consider CDM as a set of point-like inhomogeneities  

(e.g. galaxies, groups and clusters of galaxies) 

Energy-momentum tensor (EMT) of inhomogeneities (e.g. Landau&Lifshitz): 
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Helmholtz (not Poisson!) equation 
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defines the range of the Yukawa interaction  

 

Helmholtz equation 
 

Solution in the form of 

Yukawa potential 
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0 3700 Mpc 

Transition to the Newtonian limit: 

At present time: 



0 

Cosmological screening (i.e. finite        )  

is the effect of the background: 

 0  

Bigger then Great GRBs Wall 

3066  Mpc 
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At the present time: 
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The Yukawa interaction range        and the horizons: 
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Cosmological screening : 
 

Yukawa-type exponential screening of 

the gravitational potential at distances iR R  

            sets an upper limit on the size 

of greatest structures in the Universe ! 

Let us demonstrate it with the help of  

a simple numerical simulation 
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Cosmological mosaic of galactic superstructures  

cooked on a home computer 

The scheme of the simulation: 

1.  we populate a simulation box with a number of randomly  

distributed point-like massive particles. 

 

2.  we investigate the growth of the mass density contrast  

in the framework of the cosmic screening approach. 
 
3.  we analyze formed structures and compare sizes of the largest  

ones with the value of the screening length             at that moment. 

  

f
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initial final 

Scale factors 

ia fa
Screening lengths 
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Redshifts (our choice) 

i 300z 
f 2z 

i 0.71Mpc  f 710Mpc 
Edge of simulation box 

iL fL
Our requirements 

f fL  Let 
f 6GpcL 

The effect of periodic boundary conditions  

is weakened and the simulation box can 

embrace the largest cosmic structures 

i
i

1

L

N
  -- typical distance 

between particles  

At initial time particles 

can be considered as free 
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Calculations: 

A system of               identical point-like particles with mass density 
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Averaged density contrast over the cell with coordinates                    

of its center                           (window functions): 
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The root-mean-square deviation (RMSD): 
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Comments on simulations:  

1.  According to the symmetry of the simulation box and the splitting of this box  

into square cells, the projections of structures on the vertical and horizontal axes  

are considered as linear sizes of those structures. Hence, when we speak about 

the largest structures consisting, e.g., of four cells, we mean four projective  

(either on the vertical or horizontal axis) cells. 

 

2. We check all structures consisting of  4 or more projective cells. 

 

3. Due to periodic boundary conditions, structures can cross the boundaries  

of the box forming superstructures. 

 

4. If cells are connected through edges,  they evidently form the common  

structure.  However, if they are connected via vertices, these vertices should be  

checked additionally.  

We build a cell centered on the corresponding vertex, calculate the window function for 
this cell and compare it with RMSD. If it passes this test (i.e. the window function 
exceeds RMSD), then the cells connected via this vertex form a common structure. 
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a b Periodic boundary 
condition 

Dotted rectangles embrace formations with four projective cells.   

Bold rectangles embrace formations with more than four projective cells. 
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d 
e 
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Periodic boundary 
condition 
 



All "suspicious" formations consisting of more than four projective cells for 

simulations a,b,d,e, respectively. Black circles indicate the vertices that 

failed the test. 
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these two vertices passed  
the test successfully 

common structure 
between two circles 

There are no common structure consisting of  

more than four projective cells ! 
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Simulation of void distribution 

There are no common voids  

consisting of more than  

four projective cells 

! 



Conclusions: 
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1. The sizes of the greatest superstructures or supervoids in the  

Universe do not exceed the cosmic screening length        which  

determines the  range of Yukawa gravitational interaction.  

At the present time                         . 

3. The scale of homogeneity must be greater than     . It reconciles 

the cosmological principle, the cornerstone of modern 

cosmology, with the existence of superstructures. 

02. The value         is bigger than the largest known structure  

in the Universe (Great GRBs Wall):                                                 . 0 3700 Mpc 3066 Mpc  



0 3.7 Gpc 


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THANK YOU! 


