

The Pierre Auger Observatory:

Inés Valiño

Gran Sasso Science Institute & INFN LNGS, Italy on behalf of the Pierre Auger Collaboration

New Trends in HEP 2019 Одеса, 16/05/2019

Cosmic Rays

Previously on the UHECR field...

It was commonly believed that:

- UHECR were protons
- It could exist (or not!) a cutoff in the cosmic-ray flux at the highest energies due to GZK energy losses on the CMB.

- The ankle feature (flattening) in the spectrum at few EeV marked the transition from cosmic rays with a Galactic origin to an extragalactic proton-dominant component.
- Speculation if the UHECR above 10 EeV were created in our Milky Way or in distant extragalactic objects
- Many models to explain the origin of the UHECR (including top-down scenarios for where UHECRs originate from decay of supermassive particles).

Now

Discoveries made over the past decade thanks to the current UHECR observatories have dramatically advanced our understanding of UHECRs and their sources, but indicate a **complex astrophysical picture**...

Highlights from the Pierre Auger Observatory

Astrophysics

- Energy spectrum: flux suppression
- Unexpected mass composition
- Challenging level of isotropy with a dipole
- Multi-messenger observations: neutrinos and gamma rays
- Exotic scenarios ruled out

Particle physics well beyond LHC energies

- Constraints to hadronic interaction models:
 - Muon deficit in simulated showers
- Proton-air cross section at $\sqrt{s} = 57$ TeV

Other capabilities

- Laboratory for new detection techniques: radio
- Atmospheric science

Pierre Auger Observatory

10 8

17 countries, ~90 institutions, ~400 authors (~100 PhD students)

Pierre Auger Observatory: state-of-the art cosmic ray detector

- The world's largest observatory to study CRs above 10¹⁷ eV
- Detection of extensive air showers induced by CR in the Earth's atmosphere

Hybrid concept

Fluorescence detector (FD)

fluorescence telescopes:

- calorimetric energy measurement
- ▶ ~13-15 % duty cycle

• Surface detector (SD)

water-Cherenkov detectors:

- sensitive to the μ and EM (e^{\pm},γ) shower components
- ~100% duty cycle

Pierre Auger Observatory: initial detectors

• Fluorescence detector (FD)

24 telescopes in 4 sites

- ▶ FoV: 0 30°
- ▶ Full efficiency: E > 10¹⁸ eV

• Surface detector (SD)

1660 stations in 1500 m grid

- ▶ 3000 km²
- ► E > 10^{18.5} eV

Data taking since January 2004

[The Pierre Auger Collaboration, NIM A 798 (2015) 172-213]

Pierre Auger Observatory: multi-detector

• Fluorescence detector (FD)

24 telescopes in 4 sites

- ▶ FoV: 0 30°
- ▶ E > 10¹⁸ eV

HEAT (3 telescopes)

FoV: 30 - 60°
 E > 10¹⁷ eV

• Surface detector (SD)

1660 stations in 1500 m grid

- ▶ 3000 km²
- ► E > 10^{18.5} eV

61 stations in 750 m grid

- ▶ 23.5 km²
- ▶ E > 10^{17.5} eV

Pierre Auger Observatory: multi-detector

• Fluorescence detector (FD)

24 telescopes in 4 sites

- ▶ FoV: 0 30°
- ▶ E > 10¹⁸ eV

HEAT (3 telescopes)

- ▶ FoV: 30 60°
- ▶ E > 10¹⁷ eV

• Surface detector (SD)

1660 stations in 1500 m grid

- ▶ 3000 km²
- ► E > 10^{18.5} eV

61 stations in 750 m grid

- ▶ 23.5 km²
- ▶ E > 10^{17.5} eV

• Auger Engineering Radio Array (AERA)

153 antennas in 17 km² array

[The Pierre Auger Collaboration, NIM A 798 (2015) 172-213]

Hybrid detection of air showers

Auger energy spectra

Precise measurement over 3 decades in energy (full data-driven approach):

- 4 data sets using either SD and FD
- ► Auger ICRC2017: ~ 300,000 events; 67,000 km² sr yr exposure

Good agreement of the individual spectra within the uncertainties ⇒ combined spectrum

Combined energy spectrum

Combined energy spectrum: spectral features

[F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

Combined energy spectrum: spectral features

Mass composition: the X_{max} observable

Proton-induced showers develop deeper than Fe-induced ones, and have greater fluctuations $\Rightarrow X_{max}$ estimator of the mass composition

Mass composition: X_{max} moments

• Clear break at 10^{18.3} eV

- Predominant light composition at around the ankle
- Auger data suggests a gradual increases of mass with energy (A \approx 14 20 at E \approx 10^{19.5} eV)

[The Pierre Auger Collaboration, Phys. Rev. D 96, 122003 (2017)] [J. Bellido for the Pierre Auger Collaboration, PoS(ICRC2017)506]

[[]J. Bellido for the Pierre Auger Collaboration, PoS(ICRC2017)506]

Search for the sources: Large-scale Anisotropy

Energy dependence of the UHECR dipole

Search for the sources: Intermediate-scale Anisotropy

- At higher energies, Galactic and extragalactic deflections of UHECR nuclei are expected to smear point sources into warm/hot spots, for which evidence is accumulating.
- Compare the arrival direction of UHECRs with the expected flux pattern from catalogs

Fermi-LAT sources (GeV γ : full sky + no absorption for nearby sources):

- ▶ D < 250 Mpc
- Gamma-ray sources from 2FHL, > 50 GeV: 17 γ AGN (blazars and radiogalaxies)
- 23 starburst galaxies with flux > 0.3 Jy

Auger data set:

- ▶ 5514 SD events with E > 20 EeV and θ > 80°
- ▶ 89,720 km² sr yr exposure

Analysis:

- Assumption: UHECR flux \propto non-thermal photon flux
- Method: unbinned maximum likelihood analysis vs isotropy
 - Sky model: $[\alpha \times \text{sources} + (1-\alpha) \times \text{isotropic}]$ with α fraction of UHECRs correlating with position and flux of sources

Observed excess maps and results

Starburst galaxies

γAGNs

Observed Excess Map - E > 39 Eev

- Starburst galaxies: Isotropy disfavored with 4σ (E > 39 EeV 7° window 10% aniso. fraction)
- AGN: Isotropy disfavored with 2.7 σ (E > 60 EeV 13° window 7% aniso. fraction)
- Auger UHECR hotspot in the direction of CenA/M83/NGC 4945 group

Results indicate an excess of events from nearby starburst galaxies,

but only preferred to other galaxies by $\sim 3\sigma$

Auger in the multi-messenger era

- The Auger Observatory has good sensitivity to UHE neutrinos (> 100 PeV) and unrivalled sensitivity to transient sources if located in the right position in the sky.
 - Searches for UHE neutrinos in association with gravitational wave events detected by LIGO and Virgo
 - Search for neutrinos associated with GW150914 or GW151226 ⇒ no candidates
 [The Pierre Auger Collaboration, PRD 4, 1220087 (2016)]
 - ANTARES, IceCube and Auger search for neutrinos from the GW170817 binary neutron star merger ⇒ no candidates

[The Pierre Auger Collaboration, ApJ. Lett. 850 (2017) L35]

- Search in association with Blazar TXS 0506+056, candidate source for a IceCube [J. Alvarez-Muniz for the Auger Collab. UHECR 2018]
- Also unprecedented sensitivities to UHE photons (> 1 EeV)
- Auger Observatory is both triggering and a follow-up partner in the Astrophysical Multi-messenger Observatory Network (AMON), which establish and distributes alerts for immediate follow-up by subscribed observatories of all messengers.

Particle physics at UHE

ATLAS@LHC

- ► E_{beam} = 6.5 TeV
- ✓s = 13 TeV
- 7 kt detector

Pierre Auger Observatory*

- ► Ebeam > 1x10⁸ TeV
- √s > 400 TeV**
- 20 kt water Cherenkov detector
- ▶ 25Gt air calorimeter

*to scale but stacked, actual area: 3000 km²

** for p+air (> 60 TeV for Fe+air)

Muons in air showers: testing hadronic interaction models

Estimation of muon content in air showers at ground level using highly inclined events ($\theta > 62^{\circ}$) recorded by SD and FD:

AugerPrime: stepping up to the new challenges

• Complex and unexpected picture of UHECR emerging from the data

Which is the origin of the flux suppression?

- (X_{max}) data suggest a gradual heavier composition towards highest energies, but detailed interpretation limited by uncertainties in hadronic interaction models.
- Fractions of protons, neutrinos and photons at highest energies?

Large-scale anisotropies seen, but no point sources yet ⇒ Composition-enhanced anisotropy studies

Particle physics at energies well beyond the LHC

- Open questions cannot be answered with only more statistics
 - An upgraded detector that improves characterization of the muonic and EM shower components to increase the composition sensitivity, with a duty cycle of ~100%

⇒ AugerPrime

AugerPrime: upgrades

An 3.8m² scintillator counter on top of each water-Cherenkov detector

 Exploit the difference response of the two detectors to the electromagnetic and muonic showers components

- Additional (small) PMT to increase dynamic range
- Improved (faster) electronics (from 40 to 120 MHz ADC, better GPS timing)
- Extension of the FD duty cycle by 50%
- Buried muon counters in the SD-750 m array for cross-checks (AMIGA)
- Radio upgrade: a radio antenna on top of each water-Cherenkov

AugerPrime: pre-production array

- September 2016: deployment of an SSD Engineering Array (12 stations)
 - Since then data taking and first data analysis
- 2018: design finalized and tested, large-scale production of SSDs started
 - Deployment of the SSDs (5-10 per day) in the full SD array in 2018-2019
- Data taking at least until 2025
 - exposure ~ 40,000 km² sr yr

Summary

 The Pierre Auger Observatory has been successfully taking data since more than 15 years.

• Key results:

Precise measurement of the energy spectrum above 3x10¹⁷eV: flux suppression above 40 EeV firmly established

- Measurements of X_{max} over 3 orders of magnitude in energy: evidence for a mixed composition around the ankle
- Observation of a dipole structure above 8 EeV that strongly indicates an extragalactic origin of the UHECRs.
- Intriguing correlations with starburst galaxies above 39 EeV
- In the st-energy physics: inconsistency in muon data

• Exciting years ahead:

- AugerPrime has been started to unveil the new questions about UHECRs
- New era of multi messenger astrophysics

Thank you for your attention!

Image: S. Saffi

Hadronic interactions at UHE: Muons in air showers

Number of muons in an air shower: $N_{\mu} = A \left(\frac{E/A}{\xi_c}\right)^{\beta \approx 0.9 \text{ (from models)}}$ sensitive to hadronic interaction properties

Estimation of muon content in air showers at ground level using highly inclined events ($\theta > 62^{\circ}$) recorded by SD and FD

• The muon number derived by scaling a simulated reference profile of the lateral muon density distribution that fits the data:

$$\rho_{\mu,\text{data}} = N_{19} \times \rho_{\mu,\text{ref}}$$

ref: p, E=10 EeV, QGSJetII-03;

 $R_{\mu} = N_{\mu} / N_{\mu, ref}$

At $\theta = 67^{\circ}$: $N\mu$,ref = 1.5 x 10⁷ muons with $E\mu$ >0.3GeV

Muon content in data vs model predictions

At 10 EeV models underestimate muon content by 30-80% for <InA> from X_{max}

Increasing deficit with increasing energy

32

[The Pierre Auger Collaboration, PRD D91 (2015) 3, 032003]

GZK horizons (uniform source distribution)

[Kotera, K., & Olinto, A. 2011, Ann .Rev. Astron. Astrophys., 49, 119]

 Table 1

 Populations Investigated

SBGs	<i>l</i> (°)	<i>b</i> (°)	Distance ^a (Mpc)	Flux Weight (%)	Attenuated Weight: A/B/C (%)	% Contribution ^b : A/B/C (%)
NGC 253	97.4	-88	2.7	13.6	20.7/18.0/16.6	35.9/32.2/30.2
M82	141.4	40.6	3.6	18.6	24.0/22.3/21.4	0.2/0.1/0.1
NGC 4945	305.3	13.3	4	16	19.2/18.3/17.9	39.0/38.4/38.3
M83	314.6	32	4	6.3	7.6/7.2/7.1	13.1/12.9/12.9
IC 342	138.2	10.6	4	5.5	6.6/6.3/6.1	0.1/0.0/0.0
NGC 6946	95.7	11.7	5.9	3.4	3.2/3.3/3.5	0.1/0.1/0.1
NGC 2903	208.7	44.5	6.6	1.1	0.9/1.0/1.1	0.6/0.7/0.7
NGC 5055	106	74.3	7.8	0.9	0.7/0.8/0.9	0.2/0.2/0.2
NGC 3628	240.9	64.8	8.1	1.3	1.0/1.1/1.2	0.8/0.9/1.1
NGC 3627	242	64.4	8.1	1.1	0.8/0.9/1.1	0.7/0.8/0.9
NGC 4631	142.8	84.2	8.7	2.9	2.1/2.4/2.7	0.8/0.9/1.1
M51	104.9	68.6	10.3	3.6	2.3/2.8/3.3	0.3/0.4/0.5
NGC 891	140.4	-17.4	11	1.7	1.1/1.3/1.5	0.2/0.3/0.3
NGC 3556	148.3	56.3	11.4	0.7	0.4/0.6/0.6	0.0/0.0/0.0
NGC 660	141.6	-47.4	15	0.9	0.5/0.6/0.8	0.4/0.5/0.6
NGC 2146	135.7	24.9	16.3	2.6	1.3/1.7/2.0	0.0/0.0/0.0
NGC 3079	157.8	48.4	17.4	2.1	1.0/1.4/1.5	0.1/0.1/0.1
NGC 1068	172.1	-51.9	17.9	12.1	5.6/7.9/9.0	6.4/9.4/10.9
NGC 1365	238	-54.6	22.3	1.3	0.5/0.8/0.8	0.9/1.5/1.6
Arp 299	141.9	55.4	46	1.6	0.4/0.7/0.6	0.0/0.0/0.0
Arp 220	36.6	53	80	0.8	0.1/0.3/0.2	0.0/0.2/0.1
NGC 6240	20.7	27.3	105	1	0.1/0.3/0.1	0.1/0.3/0.1
Mkn 231	121.6	60.2	183	0.8	0.0/0.1/0.0	0.0/0.0/0.0
γ AGNs						
Cen A Core	309.6	19.4	3.7	0.8	60.5/14.6/40.4	86.8/56.3/71.5
M87	283.7	74.5	18.5	1	15.3/7.1/29.5	9.7/12.1/23.1
NGC 1275	150.6	-13.3	76	2.2	6.6/6.1/7.5	0.7/1.6/1.0
IC 310	150.2	-13.7	83	1	2.3/2.4/2.6	0.3/0.6/0.3
3C 264	235.8	73	95	0.5	0.8/1.0/0.8	0.4/1.3/0.5
TXS $0149 + 710$	127.9	9	96	0.5	0.7/0.9/0.7	0.0/0.0/0.0
Mkn 421	179.8	65	136	54	11.4/48.3/14.7	1.8/19.1/2.8
PKS 0229-581	280.2	-54.6	140	0.5	0.1/0.5/0.1	0.2/2.0/0.3
Mkn 501	63.6	38.9	148	20.8	2.3/15.0/3.6	0.3/5.2/0.6
1ES 2344 + 514	112.9	-9.9	195	3.3	0.0/1.0/0.1	0.0/0.0/0.0
Mkn 180	131.9	45.6	199	1.9	0.0/0.5/0.0	0.0/0.0/0.0
1ES 1959 + 650	98	17.7	209	6.8	0.0/1.7/0.1	0.0/0.0/0.0
AP Librae	340.7	27.6	213	1.7	0.0/0.4/0.0	0.0/1.3/0.0
TXS 0210 + 515	135.8	-9	218	0.9	0.0/0.2/0.0	0.0/0.0/0.0
GB6 J0601 + 5315	160	14.6	232	0.4	0.0/0.1/0.0	0.0/0.0/0.0
PKS 0625-35	243.4	-20	245	1.3	0.0/0.1/0.0	0.0/0.5/0.0
I Zw 187	77.1	33.5	247	2.3	0.0/0.2/0.0	0.0/0.0/0.0

Notes.

^a A standard, flat Λ CDM model ($h_0 = 0.7, \Omega_M = 0.3$) is assumed. The distances of the SBGs are based on Ackermann et al. (2012), accounting for a small difference in h_0 . The distances of the γ AGNs are based on their redshifts, except for the nearby Cen A (Tully et al. 2013).

^b % contributions account for the directional exposure of the array.

Neutrinos and Photons at Auger

• Top-down models strongly disfavored

- Auger limit constrains cosmogenic neutrino models with proton primaries & strong evolution of sources with redshift
- Not yet constrain models with heavier primaries

[E. Zas for the Pierre Auger Collab., Proc. 35th ICRC (2017)] [M. Niechciol for the Pierre Auger Collab., Proc. 35th ICRC (2017)]

Correlation between Auger + Telescope Array UHECRs & IceCube v

Three analyses to investigate correlations between 318 UHECRs in Auger + Telescope Array with samples of IceCube neutrino events.

[IceCube, Auger, Telescope Array JCAP 01 (2016) 37]

Combined experimental muon measurements

- Most experiments show a muon excess in the data to the MC at E > 10¹⁶ eV
- Discrepancy increases with E, and slope shows 8σ for latest-generation models

[H. Dembinski et al. for EAS-MSU, IceCube. KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope 37 Array and Yakust EAS Array collaborations, Proc. UHECR 2018 arXiv: 1902.08124]

Correlations between

X_{max} and muon density

J. Allen & G. Farrar., Proc. 33rd ICRC (2013) arXiv: 1307.7131]]

Modifications to models need to match the data on muons and maximum production depths for EM and μ components.

Mechanisms of muon production that do not modify X_{max} :

- Leading ρ^0 production
- Baryon-antibaryon pair production

Discussion of the mechanisms of muon production in EAS with Sybill 2.3c

Relative to Sibyll 2.1, and switching off the mechanisms:

F. Riehn et at, Proc. ISVHECRI 2018, EPJ Web of Conferences 208, 11002 (2019)] 38

 $\rho_{\mu}(Mod) / \rho_{\mu}(QII, p)$

p-air cross section from Auger data

[R. Ulrich for the Pierre Auger Collab., Proc. 34th ICRC (2015), arXiv: 1509.03732]

Scintillator design

2016 WLS fibers + extruded scint. bars routers w/ 2 holes PMT 1cm 5cm WLS fibers + routers ---scint. 3.8 m² Aluminium enclosure extruded scintillator bars 160cm

Radio upgrade design

- To measure the CR properties above 10^{17.5} eV up to beyond 10²⁰ eV
 - Measurement of highly inclined showers ($60^{\circ} < \theta < 84^{\circ}$)
 - \Rightarrow extend EM-muon separation to high θ
 - Type of particle up to highest energies
 - Absolute energy calibration from 1st principles
 - Independent mass scale
- 100% duty cycle

- 1st prototype under evaluation
- Radio upgrade fully funded, and implementation currently ongoing