Pulsed Electrical Field Impact on Cyanide Biodegradation by Pseudomonas fluorescens

Vladyslav Yakovliev, Volodymyr Ermakov, Bohdan Lev

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine. 14b, Metrolohichna Str., Kyiv 03143, Ukraine

e-mail: vladyakovliev1@gmail.com

The impact of the pulsed electrical field on the cyanide biodegradation process was investigated in this work. In the experiment, $Pseudomonas\ fluorescens$ bacteria was treated by the pulsed electrical field for 15 mins ($f=100\ Hz$, impulse duration is 1 ms) before adding to the solution with $Na[Ag(CN)_2]$ complex, and the appropriate kinetics was described [1]. During the cyanide biodegradation process, cyanide blocks the respiratory centers (RCs) of bacteria, but simultaneously bacteria degrade cyanide using the respiratory mechanism [2]. Theoretical analysis of the cyanide biodegradation kinetics was carried out in [3].

The purpose of this work is to introduce a phenomenological model (1-2) that explains the cyanide biodegradation process in [1], and to describe the impact of pulsed electrical field on respiratory parameters of bacteria.

$$\frac{dn}{dt} = -(\gamma_0 + \gamma_1 C) n + (g_0 + g_1 n) (1 - n) - a (1 - C)$$
(1)

$$\frac{dC}{dt} = -\alpha n \frac{C}{C + C_m} \tag{2}$$

where n is a relative number of active RCs that can degrade cyanide, C is a cyanide concentration in the solution, $\gamma(C) = \gamma_0 + \gamma_1 C$ is the rate of RC deactivation for low cyanide concentrations, γ_0 and γ_1 are constants. $g(n) = g_0 + g_1 n$ is the rate of RC activation, g_0 and g_1 are constants. α is the maximum rate of the cyanide destruction, C_m is the Michaelis constant, a is the rate of RCs deactivation caused by by-product generation in the solution. Note that the system (1-2) is already normalized.

During the analysis of the dependence of absorbed oxygen on cyanide concentration from [4], we identified the following relations: $\alpha/C_m = g_1 + g_0/D^2 - \frac{\gamma_1}{AB}$ and $C_m = \frac{2}{B} \left(g_1 + g_0/D^2 - \frac{\gamma_1}{AB}\right) / \left(2\frac{\gamma_1}{AB} - 2\frac{g_0A}{D^3} - g_1 - \frac{g_0}{D^2}\right)$, where A,B and D are constants. Thus parameters responsible for the rate of cyanide biodegradation are dependent on the parameters related to the respiratory activity of bacteria. In addition, we found that $\gamma_0 = g_1 - g_1D - g_0 + g_0/D$. For other parameters, we identified the dependencies on the voltage of the pulsed electrical field (Fig 1). g_1 and γ_1 have linear dependence on voltage. Parameter a is not dependent on voltage. Also, we applied the aforementioned model and results to the cyanide biodegradation experiment in [4] after the re-normalization.

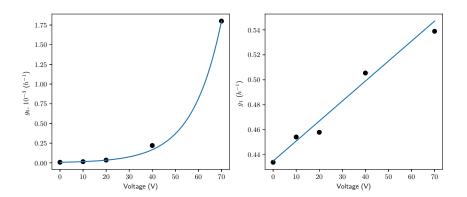


Figure 1: Dependencies of the system parameters on the voltage of pulsed electrical field

- [1] Podolska V.I, Yakubenko L.N., Ulberg. Z.R., et al. Effect of Weak Pulse Electric Fields on Surface Properties and Destructive Activity of Pseudomonas Bacteria. *Colloid Journal.* 72, 830 (2010).
- [2] Harris R.E., Bunch A.W., Knowles C.J. Microbial cyanide and nitrile metabolism. Sci. Prog., Oxf., 71: 293 (1987).
- [3] Podolska V.I., Ermakov V.N., Yakubenko L.N., et al. Effect of low-intensity pulsed electric fields on the respiratory activity and electrosurface properties of bacteria. Food Biophysics, 4, 281 (2009).
- [4] Yakubenko L.N., Podolska V.I., Vember V.E., Karamushka V.I. The influence of transition metal cyanide complexes on the electrosurface properties and energy parameters of bacterial cells, *Colloids and Surfaces A: Physicochemical and Engineering Aspects.* **104**, 11 (1995)