Contribution ID: 72 Type: Oral

Kontsevich graph γ_3 -flow of Nambu-Poisson brackets: triviality established in 2D, 3D, and now, in 4D

Kontsevich constructed a map from suitable cocycles in the graph complex to infinitesimal deformations of Poisson bivectors. Are such deformations trivial, meaning, do they amount to a change of coordinates along a vector field? We examine this question for Nambu-Poisson brackets deformed by the tetrahedron γ_3 , the smallest nontrivial graph cocycle in the Kontsevich graph complex.

We use Kontsevich's graph calculus, in which directed graphs encode differential formulas on \mathbb{R}^d . In particular, we use dimension-specific micro-graphs, in which each vertex represents an element of the Nambu-Poisson bracket.

The (non)trivialisation problem gives us a sequence of overdetermined inhomogeneous linear algebraic systems on the coefficients of micro-graphs over \mathbb{R}^d , for $d \geq 2$. We use the SageMath package *gcaops* for computations. For a chosen good graph, namely the tetrahedron γ_3 , Kontsevich knew that the linear system is solvable for d=2 (1996). In 2020, Buring and Kiselev proved that the linear system is solvable for d=3. Building on these discoveries, we now establish that for the γ_3 -flow, the linear system is solvable for d=4.

Primary authors: JAGOE BROWN, Mollie Susan; KISELEV, Arthemy (University of Groningen)

Presenter: JAGOE BROWN, Mollie Susan **Session Classification:** MATHEMATICS

Track Classification: MATHEMATICS