Contribution ID: 115 Type: Poster

Two-dimensional central extensions of some superconformal loop Lie algebra generalization and compatibly bi-Hamiltonian (2|N+1)-dimensional systems on functional supermanifolds

For $N \in \{1,2,3\}$ there is considered the semi-direct sum $\tilde{\mathcal{G}} \propto \tilde{\mathcal{G}}^*_{reg}$ of the loop Lie algebra $\tilde{\mathcal{G}}$, consisting of the even left superconformal vector fields on a supercircle $\mathbb{S}^{1|N}$ in the form $\tilde{a} := a\partial/\partial x + \frac{1}{2}\sum_{i=1}^{N}(D_{\vartheta_i}a)D_{\vartheta_i}$, where $a:=a(x,\vartheta;\lambda)\in C^{\infty}(\mathbb{S}^{1|N}\times(\mathbb{D}^1_+\cup\mathbb{D}^1_-);\Lambda_0)$ is holomorphic in the "spectral" parameter $\lambda\in$ $\mathbb{D}^1_+ \cup \mathbb{D}^1_- \subset \mathbb{C}, \, \mathbb{D}^1_+, \mathbb{D}^1_-$ are the interior and exterior regions of the unit centrally located disk $\mathbb{D}^1 \subset \mathbb{C}$ respectively, $a(x, \vartheta; \infty) = 0$, $(x, \vartheta) \in \mathbb{S}^{1|N} \simeq \mathbb{S}^1 \times \Lambda_1^N$, $\Lambda := \Lambda_0 \oplus \Lambda_1$ is a commutative Banach superalgebra over the field $\mathbb{C} \subset \Lambda_0$, $\partial/\partial x$ is a partial derivative by the commuting variable x, $\vartheta := (\vartheta_1, \vartheta_2, \dots, \vartheta_N)$, $\partial/\partial\vartheta_i$ is a left partial derivative by the anticommuting variable $\vartheta_i\in\Lambda_1, D_{\vartheta_i}:=\partial/\partial\vartheta_i+\vartheta_i\partial/\partial x, i=\overline{1,N},$ and its regular dual space $\tilde{\mathcal{G}}_{reg}^*$ with respect to the parity $(\tilde{a},\tilde{l})_0 = \operatorname{res}_{\lambda \in \mathbb{C}} \int_{\mathbb{S}^{1|N}} dx d\vartheta_1 \dots d\vartheta_N (al)$, where res $_{\lambda \in \mathbb{C}}$ denotes the coefficient at λ^{-1} in the corresponding Laurent series, $\tilde{l} \in \tilde{\mathcal{G}}^*_{reg}$ is a right superdifferential 1-form on $\mathbb{S}^{1|N}$ such as $\tilde{l} := (dx - \sum_{i=1}^N (d\vartheta_i)\vartheta_i)l(x,\vartheta;\lambda) \in \tilde{\mathcal{G}}^*_{reg}, l := l(x,\vartheta;\lambda) \in C^{\infty}(\mathbb{S}^{1|N} \times (\mathbb{D}^1_+ \cup \mathbb{D}^1_-);\Lambda_s)$ is holomorphic in the "spectral" parameter $\lambda \in \mathbb{D}^1_+ \cup \mathbb{D}^1_-, l(x,\vartheta;\infty) = 0, s = 1$ if N is an odd natural number and s=0 if N is an even one. The loop Lie algebra $\tilde{\mathcal{G}}$ is splitting into the direct sum $\tilde{\mathcal{G}} = \tilde{\mathcal{G}}_+ \oplus \tilde{\mathcal{G}}_-$ of its Lie subalgebras for which $\tilde{\mathcal{G}}_{+,reg}^* \simeq \tilde{\mathcal{G}}_-$, $\tilde{\mathcal{G}}_{-,reg}^* \simeq \tilde{\mathcal{G}}_+$, where $a(x,\vartheta;\infty) = 0$ for any $\tilde{a} \in \tilde{\mathcal{G}}_-$. On $\tilde{\mathcal{G}} \propto \tilde{\mathcal{G}}_{reg}^*$ one determines the commutator $[\tilde{a} \propto \tilde{l}, \tilde{b} \propto \tilde{m}] := [\tilde{a}, \tilde{b}] \propto (ad_{\tilde{a}}^* \tilde{m} - ad_{\tilde{b}}^* \tilde{l})$ for any $\tilde{a}, \tilde{b} \in \tilde{\mathcal{G}} \text{ and } \tilde{l}, \tilde{m} \in \tilde{\mathcal{G}}_{reg}^*, \text{ where } [\tilde{a}, \tilde{b}] := \tilde{c}, \tilde{c} \in \tilde{\mathcal{G}}, c := a(\partial b/\partial x) - b(\partial a/\partial x) + \frac{1}{2} \sum_{i=1}^{N} (D_{\vartheta_i} a)(D_{\vartheta_i} b),$ ad^* is the coadjoint action of $\tilde{\mathcal{G}}$ with respect to the parity $(.,.)_0$, as well as the symmetric bilinear form $(\tilde{a}\propto \tilde{l},\tilde{b}\propto \tilde{m})_0=(\tilde{a},\tilde{m})_0+(\tilde{b},\tilde{l})_0$. One constructs the central extensions $\hat{\mathfrak{G}}:=\hat{\mathfrak{G}}\oplus\mathbb{C}^2$ of the Lie algebra $\mathfrak{G}:=\prod_{z\in\mathbb{S}^1}(\tilde{\mathcal{G}}\propto \tilde{\mathcal{G}}_{reg}^*)$ by the superanalogs of the Ovsienko-Roger 2-cocycle such as $\omega_2(\tilde{a}\propto l,b\propto \tilde{m}):=$ $(\omega_2^1(\tilde{a} \propto \tilde{l}, \tilde{b} \propto \tilde{m}), \omega_2^2(\tilde{a} \propto \tilde{l}, \tilde{b} \propto \tilde{m})), \text{ where } \omega_2^1(\tilde{a} \propto \tilde{l}, \tilde{b} \propto \tilde{m}) = \text{res } \int_{\mathbb{S}^1} dz \int_{\mathbb{S}^{1|N}} dx d^N \vartheta \left(a(\mathcal{P}b) \right),$ $\omega_2^2(\tilde{a} \propto \tilde{l}, \tilde{b} \propto \tilde{m}) = \int_{\mathbb{S}^1} dz \, ((a, \partial m/\partial z)_0 - (b, (\partial l/\partial z)_0), \, (\tilde{a} \propto \tilde{l}), (\tilde{b} \propto \tilde{m}) \in \tilde{\mathfrak{G}}, \, z \in \mathbb{S}^1, \, \text{and} \, \mathcal{P} = D_{\vartheta_1} \partial^2/\partial^2 x \, \text{when} \, N = 1, \, \mathcal{P} = D_{\vartheta_1} D_{\vartheta_2} \partial/\partial x \, \text{when} \, N = 2, \, \mathcal{P} = D_{\vartheta_1} D_{\vartheta_2} D_{\vartheta_3} \, \text{when} \, N = 3.$

Since the Lie algebra $\tilde{\mathfrak{G}}$ permits the standard splitting $\tilde{\mathfrak{G}}:=\tilde{\mathfrak{G}}_+\oplus\tilde{\mathfrak{G}}_-$ into a direct sum of its Lie subalgebras $\tilde{\mathfrak{G}}_+:=\prod_{z\in\mathbb{S}^1}(\tilde{\mathcal{G}}_+\propto\tilde{\mathcal{G}}_{-,reg}^*)$ and $\tilde{\mathfrak{G}}_-:=\prod_{z\in\mathbb{S}^1}(\tilde{\mathcal{G}}_-\propto\tilde{\mathcal{G}}_{+,reg}^*)$, on its dual space $\tilde{\mathfrak{G}}^*$ with respect to the symmetric bilinear form $\langle .,. \rangle_0:=\int_{\mathbb{S}^1}dz\,(.,.)_0$ one can introduce for any smooth by Frechet functionals $\mu,\nu\in\mathcal{D}(\tilde{\mathfrak{G}}^*)$ the \mathcal{R} -deformed Lie-Poisson bracket $\{\mu,\nu\}_{\mathcal{R}}(\tilde{a}\propto\tilde{l})=\langle\tilde{a}\propto\tilde{l},[R\nabla_r\mu(\tilde{a}\propto\tilde{l}),\nabla_l\nu(\tilde{a}\propto\tilde{l})]+[\nabla_r\mu(\tilde{a}\propto\tilde{l}),R\nabla_l\nu(\tilde{a}\propto\tilde{l})]\rangle_0+\langle e,\omega_2(R\nabla_r\mu(\tilde{a}\propto\tilde{l}),\nabla_l\nu(\tilde{a}\propto\tilde{l}))+\omega_2(\nabla_r\mu(\tilde{a}\propto\tilde{l}),R\nabla_l\nu(\tilde{a}\propto\tilde{l}))>,$ where $e=(e_1,e_2)\in\mathbb{C}^2$, the brackets $<\cdot,\cdot...>$ denote the scalar product on \mathbb{C}^2 , $\mathcal{R}=(P_+-P_-)/2$, P_+ and P_- are projectors on $\tilde{\mathfrak{G}}_+$ and $\tilde{\mathfrak{G}}_-$ respectively, $\nabla_lh(\tilde{a}\propto\tilde{l}):=(\nabla_lh_{\tilde{l}}\propto\nabla_lh_{\tilde{a}})\in\tilde{\mathfrak{G}}$ and $\nabla_rh(\tilde{a}\propto\tilde{l}):=(\nabla_rh_{\tilde{l}}\propto\nabla_rh_{\tilde{a}})\in\tilde{\mathfrak{G}}$ and $\tilde{\mathfrak{G}}_-$ respectively, $\nabla_lh(\tilde{a}\propto\tilde{l}):=(\nabla_lh_{\tilde{l}}\times\nabla_lh_{\tilde{a}})\in\tilde{\mathfrak{G}}$ and $\tilde{\mathfrak{G}}_-$ by at $(\tilde{a}\propto\tilde{l})\in\tilde{\mathfrak{G}}^*$, which due to the Adler-Kostant-Symes theory generates the hierarchy of Hamiltonian flows on $\tilde{\mathfrak{G}}^*\simeq\tilde{\mathfrak{G}}$ in the form $\partial(\tilde{a}\propto\tilde{l})/\partial t_p=\{\tilde{a}\propto\tilde{l},h^{(p)}(\tilde{a}\propto\tilde{l})\}_{\mathcal{R}},p\in\mathbb{Z}_+$, where $h^{(p)}(\tilde{a}\propto\tilde{l})=\lambda^ph(\tilde{a}\propto\tilde{l})$, for the Casimir invariant $h\in I(\hat{\mathfrak{G}}^*)$. The reductions of this hierarchy on polynomial type coadjoint orbits of the Lie algebra $\hat{\mathfrak{G}}$ are shown to lead to hierarchies of compatibly bi-Hamiltonian (2|N+1)-dimensional systems on functional supermanifolds.

Primary author: HENTOSH, Oksana (Pidstryhach IAPMM, NAS of Ukraine)

Presenter: HENTOSH, Oksana (Pidstryhach IAPMM, NAS of Ukraine)

Session Classification: MATHEMATICS

Track Classification: MATHEMATICS