Contribution ID: 37 Type: Oral

Extremal decomposition problem for points on an arbitrary ellipse

Let \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be its one point compactification. A function $g_B(z,a)$ which is continuous in $\overline{\mathbb{C}}$, harmonic in $B\setminus\{a\}$ apart from z, vanishes outside B, and in the neighborhood of a has the following asymptotic expansion $g_B(z,a) = -\log|z-a| + \gamma + o(1), \quad z \to a, is called the (classical) Green function of the domain <math>B$ with respect to a point a is the quantity e^{γ} . By using the variational method G.M. Goluzin established that for functions $f_k(z)$ which univalently map the disc |z| < 1 onto mutually non-overlapping domains, $k \in \{1,2,3\}$, exact estimate holds $\left|\prod_{k=1}^3 f_k'(0)\right| \leq \frac{64}{81\sqrt{3}}|(f_1(0)-f_2(0))(f_1(0)-f_3(0))(f_2(0)-f_3(0))|$. Equality is attained only for functions $w=f_k(z)$ which conformally and univalently map the disc |z|<1 onto the angles $2\pi/3$ with vertex at point w=0 and bisectors of which pass through points $f_k(0)$, $|f_k(0)|=1$. E.V. Kostyuchenko proved that the maximum value of multiplication of inner radiuses for three simply connected non-overlapping domains in the disk is attained for three equal sectors. However, this statement remains valid for multiply connected domains D_k . We have considered an extremal problem on the maximum of product of the inner radii on a system of n mutually non-overlapping multiply connected domains D_k containing the points a_k , $k=1,\ldots,n$, located on an arbitrary ellipse $\frac{x^2}{d^2} + \frac{y^2}{t^2} = 1$ for which $d^2 - t^2 = 1$.

Primary author: DENEGA, Iryna (Institute of mathematics of NAS of Ukraine)

Presenter: DENEGA, Iryna (Institute of mathematics of NAS of Ukraine)

Session Classification: MATHEMATICS

Track Classification: MATHEMATICS