The some solution of the Boltzmann equation

Oleksii Hukalov¹ and Vyacheslav Gordevskyy²

1)B. Verkin ILTPE of NASU, Kharkiv, Ukraine, hukalov@ilt.kharkov.ua

²⁾V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, gordevskyy2006@gmail.com

The Boltzmann equation [1] that describes the evolution of rarefied gases is one of the main equations of the kinetic theory of gases. For a model of hard spheres, the equation has the form:

$$
D(f) = Q(f, f),\tag{1}
$$

where the left-hand side of the equation is the differential operator:

$$
D(f) \equiv \frac{\partial f}{\partial t} + \left(V, \frac{\partial f}{\partial x}\right),\tag{2}
$$

and the right-hand side of (1) is the collision integral, which for the hard spheres model is as follows:

$$
Q(f, f) \equiv \frac{d^2}{2} \int_{R^3} dV_1 \int_{\Sigma} d\alpha |(V - V_1, \alpha)| \Big[f(t, x, V'_1) f(t, x, V') - f(t, x, V) f(t, x, V_1) \Big],\tag{3}
$$

where $f(t, x, V)$ is the distribution function of particles.

The solution to this equation will be look for in the next form:

$$
f(t, x, V) = \sum_{i=1}^{\infty} \varphi_i(t, x) M_i(t, x, V), \qquad (4)
$$

where

$$
M_i(t, x, V) = \rho_i \left(\frac{\beta_i}{\pi}\right)^{3/2} e^{-\beta_i (V - \overline{V}_i)^2}.
$$
\n
$$
(5)
$$

The density

$$
\rho_i = \rho_{0i} e^{\beta_i \omega_i^2 r_i^2},\tag{6}
$$

where ρ_{0i} is a nonnegative scalar constant, the parameter β_i is the quantity inverse to the absolute temperature:

$$
\beta_i = \frac{1}{2T_i},\tag{7}
$$

the vector ω_i is the angular velocity of the gas flow as a whole with which it rotates about some axis, and r_i^2 is the distance between the molecule and the axis of rotation x_{0i} :

$$
r_i^2 = \frac{1}{\omega_i^2} [\omega_i, x - x_{0i} - u_{0i} t]^2,
$$
\n(8)

$$
x_{0i} = \frac{1}{\omega_i^2} [\omega_i, \hat{V}_i - u_{0i}], \qquad (9)
$$

(here [a, b] is the vector product of the vectors a and b) the vector $u_{0i}\perp\omega_i$ and it is the linear velocity of the axis of the *i*−th rotating gas flow. By V_i , we denote the translational velocity of the flow included in the mass velocity:

$$
\overline{V}_i = \widehat{V}_i + [\omega_i, x - u_{0i}t]. \tag{10}
$$

The coefficient functions $\varphi_i(t,x)$ are nonnegative smooth functions on \mathbb{R}^4 and their norm:

$$
||\varphi_i(t,x)|| = \sup_{(t,x)\in\mathbb{R}^4} \left(|\varphi_i(t,x)| + \left| \frac{\partial \varphi_i(t,x)}{\partial t} \right| + \left| \frac{\partial \varphi_i(t,x)}{\partial x} \right| \right) \tag{11}
$$

is not equal to zero.

The aim of the work is to find the form of the coefficient functions $\varphi_i(t, x)$ and the conditions for the hydrodynamic parameters of Maxwellians for which the uniform-integral error:

$$
\Delta = \Delta(\beta_i) = \sup_{(t,x)\in\mathbb{R}^4} \int_{\mathbb{R}^3} |D(f) - Q(f,f)|dV
$$
\n(12)

can be arbitrarily small.

Theorem 1 Let the coefficient functions have the form

$$
\varphi_i(t,x) = \psi_i(t,x)e^{-\beta_i \omega_i^2 r_i^2},\tag{13}
$$

where $\psi_i(t, x) \geq 0$ are smooth nonnegative functions and their norm (11) is not equal to zero. We require that all function series with one of the following common terms

$$
\psi_i, \quad |x|\psi_i, \quad t\psi_i, \quad \left|\frac{\partial \psi_i}{\partial x}\right|, \quad \left|\frac{\partial \psi_i}{\partial t}\right|, \quad |x|\left|\frac{\partial \psi_i}{\partial x}\right|, \quad t\left|\frac{\partial \psi_i}{\partial t}\right| \tag{14}
$$

converge uniformly on the \mathbb{R}^4 after multiplying by ρ_{0i} . Suppose that

$$
\omega_i = \omega_{0i} \beta_i^{-m_i}, \ m_i \geqslant \frac{1}{4}.
$$
\n
$$
(15)
$$

Then there exists a function Δ' such that

$$
\Delta \leqslant \Delta',\tag{16}
$$

and:

1. if $m_i > \frac{1}{2}$, then:

$$
\lim_{\beta_i \to +\infty} \Delta' = \sum_{i=1}^{\infty} \rho_{0i} \sup_{(t,x) \in \mathbb{R}^4} \left| \frac{\partial \psi_i}{\partial t} + \left(\widehat{V}_i, \frac{\partial \psi_i}{\partial x} \right) \right| + 2\pi d^2 \sum_{\substack{i,j=1 \ i \neq j}}^{\infty} \rho_{0i} \rho_{0j} \left| \widehat{V}_i - \widehat{V}_j \right| \sup_{(t,x) \in \mathbb{R}^4} (\psi_i \psi_j); \tag{17}
$$

2. if $m_i = \frac{1}{2}$, then in the right-hand side of (17) there is the additional term.

$$
\frac{4}{\sqrt{\pi}} \sum_{i=1}^{\infty} \rho_{0i} \left| \left[\omega_{0i}, \hat{V}_i - u_{0i} \right] \right| \sup_{(t,x) \in \mathbb{R}^4} \psi_i;
$$
\n(18)

3. if $\frac{1}{4} < m_i < \frac{1}{2}$ and vectors ω_{0i} , $(\widehat{V}_i - u_{0i})$ are parallel

$$
\omega_{0i} \parallel \left(\widehat{V}_i - u_{0i}\right),\tag{19}
$$

then assertion (17) is also true;

4. if $m_i = \frac{1}{4}$ and

$$
\omega_i = \omega_{0i} s_i \beta_i^{-\frac{1}{4}},\tag{20}
$$

where s_i are positive constants and, in addition, require the validity of (19) , then in the right-hand side of (17) there is the additional term:

$$
\frac{4}{\sqrt{\pi}} \sum_{i=1}^{\infty} \rho_{0i} s_i^2 \omega_{0i}^2 \sup_{(t,x)\in\mathbb{R}^4} \left((|x| + |x - u_{0i}t|) \psi_i \right). \tag{21}
$$

The sufficient conditions for minimizing the deviation (12) are presented in the following corollary.

Corollary 1 Let the functions $\psi_i(t, x)$ have the form:

$$
\psi_i(t, x) = C_i \left(x - \widehat{V}_i t \right) \tag{22}
$$

or

$$
\psi_i(t, x) = E_i\left(\left[x, \hat{V}_i\right]\right),\tag{23}
$$

and let the functions C_i and E_i satisfy the conditions of Theorem 1.

In addition, if one of the following conditions is true:

$$
\overline{V}_i = \overline{V}_j,\tag{24}
$$

$$
supp \varphi_i \cap supp \varphi_j = \emptyset \quad (i \neq j), \tag{25}
$$

$$
d \to 0,\tag{26}
$$

then, for $m_i > \frac{1}{2}$, the error (12) can be made arbitrarily small. For $m_i \in (\frac{1}{4},\frac{1}{2}]$, (12) is infinitesimally small if the condition (19) of Theorem 1 is fulfilled. For the value $m_i = \frac{1}{4}$, we will also require that

$$
s_i \to +0. \tag{27}
$$

Below is a theorem that contains another approach for obtaining coefficient functions in the distribution (4) .

Theorem 2 Let all function series with a common term of (14) after multiplying by a factor $e^{\beta_i\omega_i^2r_i^2}$ retain the convergence uniformly on \mathbb{R}^4 . We also assume that the condition (15) remains true and (19) is valid.

Then there exists a value Δ' , for which (16) is true, and

$$
\lim_{\beta_i \to +\infty} \Delta' = \sum_{i=1}^{\infty} \rho_{0i} \sup_{\substack{(t,x) \in \mathbb{R}^4 \\ i,j=1}} \left(\mu_i(t,x) \left| \frac{\partial \varphi_i}{\partial t} + \left(\widehat{V}_i, \frac{\partial \varphi_i}{\partial x} \right) \right| \right) \n+ 2\pi d^2 \sum_{\substack{i,j=1 \\ i \neq j}}^{\infty} \rho_{0i} \rho_{0j} \left| \widehat{V}_i - \widehat{V}_j \right| \sup_{(t,x) \in \mathbb{R}^4} (\mu_i(t,x)\mu_j(t,x)\varphi_i\varphi_j),
$$
\n(28)

where:

$$
\mu_i(t,x) = \begin{cases} e^{[\omega_{0i}, x - u_{0i}t]^2}, & m_i = \frac{1}{2} \\ 1, & m_i > \frac{1}{2} \end{cases}.
$$

REFERENCES.

- 1. S. Chapman and T.G. Cowling. The Mathematical Theory of Non-Uniform Gases. // Cambridge Univ. Press, Cambridge, 1952.
- 2. Hukalov, O. O.; Gordevskyy, V. D. The Interaction of an Infinite Number of Eddy Flows for the Hard Spheres Model. // J. Math. Phys. Anal. Geom. 2021, 17, 163-174.