Contribution ID: 64 Type: Oral

Asymptotic behaviour of solutions of the differential equation of the form $y^{(4)} = \alpha_0 p(t) \varphi(y)$ with rapidly varying nonlinearity in the case of $\lambda_0 = 1$.

1. Introduction.

In this paper we study the asymptotic behaviour of solutions of a fourth order differential equation of the form $y^{(4)} = \alpha_0 p(t) \varphi(y)$ (1). The purpose of this paper is to obtain the asymptotics $P_{\omega}(Y_0, \lambda_0)$ solutions of the differential equation (1) for the special case when $\lambda_0 = 1$.

2. Object of research.

Consider a differential equation of the form (1) where $\alpha_0 \in \{-1,1\}$, $p: [a,\omega[\longrightarrow]0,+\infty[$ -is a continuous function, $-\infty < a < \omega \le +\infty$, $\varphi : \Delta_{Y_0} \longrightarrow]0, +\infty[$ – a twice continuously differentiable function such

that
$$\varphi'(y) \neq 0$$
 where $y \in \Delta_{Y_0}$, $\lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \varphi(y) = \begin{cases} \text{or } 0, \\ \text{or } +\infty, \end{cases}$ $\lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\varphi(y)\varphi''(y)}{\varphi'^2(y)} = 1,$ Y_0 is equal to either 0 , or $\pm \infty$, Δ_{Y_0} -is a one-sided neighbourhood of Y_0 .

3. Basic definitions and notations.

The solution y of the differential equation (1) is called $P_{\omega}(Y_0, \lambda_0)$ -solution, where $-\infty \leq \lambda_0 \leq +\infty$, if it is defined on the segment $[t_0,\omega]\subset [a,\omega]$ and satisfies the following conditions $y(t)\in\Delta_{Y_0}$ at $t\in$

$$\lim_{t \uparrow \omega} y^{(k)}(t) = \begin{bmatrix} \text{ or } 0, \\ \text{ or } \pm \infty, \end{bmatrix} (k = 1, 2, 3), \quad \lim_{t \uparrow \omega} \frac{[y^{(3)}(t)]^2}{y^{(2)}(t)y^{(4)}(t)} = \lambda_0.$$

$$J_0(t) = \int\limits_{A_0}^t p_0^{\frac{1}{4}}(\tau), \, q(t) = \frac{(\Phi^{-1}(\alpha_0 J_0(t)))'}{\alpha_0 J_3(t)}, \, H(t) = \frac{\Phi^{-1}(\alpha_0 J_0(t))\varphi'(\Phi^{-1}(\alpha_0 J_0(t)))}{\varphi(\Phi^{-1}(\alpha_0 J_0(t)))},$$

$$\lim_{t\uparrow\omega}y^{(k)}(t)=\begin{bmatrix} \text{ or } 0, & (k=1,2,3), & \lim_{t\uparrow\omega}\frac{[y^{(3)}(t)]^2}{y^{(2)}(t)y^{(4)}(t)}=\lambda_0. \\ \text{Let us introduce additional auxiliary notations} \\ J_0(t)=\int\limits_{A_0}^t p_0^{\frac14}(\tau), \ q(t)=\frac{(\Phi^{-1}(\alpha_0J_0(t)))'}{\alpha_0J_3(t)}, \ H(t)=\frac{\Phi^{-1}(\alpha_0J_0(t))\varphi'(\Phi^{-1}(\alpha_0J_0(t)))}{\varphi(\Phi^{-1}(\alpha_0J_0(t)))}, \\ J_1(t)=\int\limits_{A_1}^t p_0(\tau)\varphi(\Phi^{-1}(\alpha_0J_0(\tau)))\ d\tau, \ J_2(t)=\int\limits_{A_2}^t J_1(\tau)\ d\tau, \ J_3(t)=\int\limits_{A_3}^t J_2(\tau)\ d\tau, \ \text{where the integration} \\ \text{boundary } A_i \text{ is either } \omega \text{ or constant and is defined so that the integral tends either to 0 or to } \pm\infty.$$

4. Main results.

The following two theorems are valid for equation (1).

Theorem 1. For the existence $P\omega(Y_0,1)$ -solutions of differential equation (1) that the inequalities $\alpha_0\nu_2>$

and conditions
$$\frac{\alpha_0 J_3(t)}{\Phi^{-1}(\alpha_0 J_0(t))} \sim \frac{J_1'(t)}{J_1(t)} \sim \frac{J_2'(t)}{J_2(t)} \sim \frac{J_3'(t)}{J_3(t)} \sim \frac{(\Phi^{-1}(\alpha_0 J_0(t)))'}{\Phi^{-1}(\alpha_0 J_0(t))}$$
 at $t \uparrow \omega, \alpha_0 \lim_{t \uparrow \omega} J_0(t) = Z_0$

 $0, \ \alpha_0\mu_0J_0(t) < 0, \text{at}, \ t \in]a, \omega[, \alpha_0\nu_0 < 0, \text{or}, \ Y_0 = 0, \ \alpha_0\nu_0 > 0, \text{or}, \ Y_0 = \pm\infty \ (2),$ and conditions $\frac{\alpha_0J_3(t)}{\Phi^{-1}(\alpha_0J_0(t))} \sim \frac{J_1'(t)}{J_1(t)} \sim \frac{J_2'(t)}{J_2(t)} \sim \frac{J_3'(t)}{J_3(t)} \sim \frac{(\Phi^{-1}(\alpha_0J_0(t)))'}{\Phi^{-1}(\alpha_0J_0(t))} \text{at } t \uparrow \omega, \alpha_0 \lim_{t \uparrow \omega} J_0(t) = Z_0,$ $\lim_{t \uparrow \omega} \frac{\pi_\omega(t)(\Phi^{-1}(\alpha_0J_0(t)))'}{\Phi^{-1}(\alpha_0J_0(t)))} = \pm\infty, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t)J_0'(t)}{J_0(t)} = \pm\infty \ (3).$ Moreover, for each such solution, the

asymptotic representations at
$$y(t) = \Phi^{-1}(\alpha_0 J_0(t)) \left[1 + \frac{o(1)}{H(t)} \right], \ y'(t) = \alpha_0 J_3(t) [1 + o(1)],$$

 $y''(t) = \alpha_0 J_2(t) [1 + o(1)], \ y'''(t) = \alpha_0 J_1(t) [1 + o(1)] (4).$

Theorem 2. Let $p_0: [a,\omega[\to]0,+\infty[$ - a continuously differentiable function and along with the

$$(2) - (3) \text{ conditions } \lim_{t \uparrow \omega} \frac{q'(t)J_2(t)|H(t)|^{\frac{1}{4}}}{J_2'(t)} = 0, \quad \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\left(\frac{\varphi'(y)}{\varphi(y)}\right)'}{\left(\frac{\varphi'(y)}{\varphi(y)}\right)^2} \left|\frac{y\varphi'(y)}{\varphi(y)}\right|^{\frac{3}{4}} = 0 \text{ then the differential}$$

equation (1) contains at $\alpha_0\mu_0=-1$ a two-parameter family of $P_\omega(Y_0,1)$ -solutions which admit at $t\uparrow\omega$ asymptotic representations (4) and furthermore such first, second and third order derivatives of which satisfy

at
$$t \uparrow \omega$$
 the asymptotic relations $y'(t) = \alpha_0 J_3(t) \left[1 + \frac{o(1)}{|H(t)|^{\frac{3}{4}}} \right], \ y''(t) = \alpha_0 J_2(t) \left[1 + \frac{o(1)}{|H(t)|^{\frac{1}{2}}} \right], \ y'''(t) = \alpha_0 J_3(t) \left[1 + \frac{o(1)}{|H(t)|^{\frac{3}{4}}} \right]$

$$\alpha_0 J_1(t) \left[1 + rac{o(1)}{|H(t)|^{rac{1}{4}}}\right]$$
. The question of whether the differential equation (1) has $P_{\omega}(Y_0, \lambda_0)$ - solutions admit-

ting at $t \uparrow \omega$ asymptotic representations (4) in the case when $\alpha_0 \mu_0 = 1$ is still open.

Bibliography: 1. V.M. Evtukhov, A.M. Samoilenko. \ Conditions of existence of vanishing solutions of real nonautonomous systems of quasilinear differential equations at a special point// Ukr. Mat. Mag. - 2010. - 62, № 1. - p. 52-80. 2. Maric V. Regular variation and differential equations. Lecture Notes in Math.,1726(2000).-127p. 3. A. G. Chernikova, Asymptotic images of solutions of differential equations with rapidly changing nonlinearities, PhD thesis, Odesa (2019)

Primary author: ГОЛУБЄВ, Сергій (Одеський національний університет імені І. І. Мечникова)

Co-author: GOLUBEV, Sergiy

Presenter: ГОЛУБЄВ, Сергій (Одеський національний університет імені І. І. Мечникова)

Session Classification: MATHEMATICS

Track Classification: MATHEMATICS