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Introduction

Major problems
I Finding electrodynamic homogenization type
I Taking into account many-particle reemission and correlation

effects
I Modelling a system’s microstructure

Types of approaches
I Mathematical models (percolation and graph statistical theories)
I Numerical approaches
I Modifications of classical homogenization models
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Classical homogenization models
Symmetrical effective-medium approach

In terms of the symmetrical Bruggeman
effective-medium approach (a.k.a. symmetrical
Bruggeman model (SBM)) each constituent
in the system, including the host medium (matrix), is
treated equivalently as a unitary particle embedded
in the effective medium, which is formed by all the
other constituents.

For macroscopically homogeneous and isotropic dielectric systems of
spherical balls:

(1 − c)
ε0 − ε

2ε+ ε0
+ c

ε1 − ε
2ε+ ε1

= 0. (1)
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Classical homogenization models
Asymmetrical effective-medium approach

(a) (b)

Asymmetrical (differential) Bruggeman model (ABM) assumes,
that addition of a small portion of new particles with concentration
∆c/(1 − c) in the particle-void region to the current effective medium
with permittivity ε (the lighter area in fig. (a)) leads to the formation of
a new effective medium with permittivity ε+ ∆ε, which serves as the
matrix for the next portions of inclusions (fig. (b)); ε changes
according to the Maxwell-Garnett mixing rule.

dc
1 − c

=
dε
3ε

(2ε+ ε1)

ε1 − ε
⇒ (1 − c) =

ε − ε1

ε0 − ε1

(
ε0

ε

)1/3
. (2)
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Compact group approach (CGA)
Physical interpretation

[M.Ya. Sushko, Zh. Eksp. Teor. Fiz. 132 (2007) 478; J. Phys. D: Appl. Phys.
42 (2009) 155410; Phys. Rev. E 96 (2017) 062121]

Physical interpretation of the CGA:

◦ The system is viewed as a set of
macroscopic regions (compact
groups), having linear sizes d much
smaller than the wavelength in the
system: l � λ.

◦ These groups are embedded in an
auxiliary medium with permittivity εf.

◦ They create local deviations of
permittivity:

ε(r) = εf + δε(r).
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Compact group approach (CGA)
Mathematical basis

The effective permittivity ε is determined as a proportionality
coefficient in the relation

〈D(r)〉 = 〈ε(r)E(r)〉 = ε〈E(r)〉. (3)

The average fields are found in the following steps:

1) Presenting the wave propogation equation in the system

∆E − grad div E + k 2
0 εf E = −k 2

0 δεE

in the equivalent integral form:

E(r) = E0(r) − k 2
0

∫
V

dr′ T̂(|r − r′|)δε(r′) E(r′). (4)
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Compact group approach (CGA)
Mathematical basis

2) Associating the propogator T̂ with the tensor T̃ such that for
“sufficiently good” scalar function ψ holds∫

V

drT̂(r)ψ(r) =

∫
V

drT̃(r)ψ(r),

and proceeding to the limit k0 → 0:

lim
k0→0

k 2
0 T̃αβ(r) = T̃ (1)

αβ + T̃ (2)
αβ =

1
3εf

δ(r)δαβ +
1

4πεfr3

(
δαβ − 3

rαrβ
r2

)
. (5)

[W. Weiglhofer, Am. J. Phys. 57 (1989) 455]

3) Substituting (5) into (4), making elementary algebraic
manipulations, and averaging statistically, we obtain the relation

〈E(r)〉 =

〈
3εf

3εf + δε(r)

〉
E0 − 3εf

∫
V

dr′T̃(2)(|r − r′|)
〈

δε(r′)
3εf + δε(r)

E(r′)
〉
. (6)
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Compact group approach (CGA)
General results

4) For macroscopically homogeneous and isotropic mixtures

〈E(r)〉 = (1 − η)E0, 〈D(r)〉 = εf(1 + 2η)E0, η =

〈
δε(r)

3εf + δε(r)

〉
. (7)

5) Together with the boundary conditions for the normal components
of the electric fields: εf(E0)n = ε〈E〉n, we get:

η =
ε − εf

2εf + ε
=
ε − εf

ε
⇒

εf = ε
η = 0

The resulting equation on the effective permittivity of
statistically homogeneous and isotropic mixtures:〈

δε(r)

3ε+ δε(r)

〉
= 0. (8)

[A. K. Semenov, J. Phys. Commun. 2 (2018) 035045]

The same result can be obtained using the Hashin-Shtrikman
variational theorem [M. Ya. Sushko, Phys. Rev. E 96 (2017) 062121].
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Compact group approach (CGA)
Basic examples

I Symmetric Bruggeman approach

δεCGA(r) = (ε0 − ε)(1 − χ̃1(r)) + (ε1 − ε)χ̃1(r) (9)

(1 − c)
ε0 − ε

2ε+ ε0
+ c

ε1 − ε
2εeff + ε1

= 0. (10)

I Asymmetric Bruggeman approach
Low-concentrations limit:

δε(l)ABM(r) = (ε − (ε+ ∆ε))[1 − χ̃1(r) −∆χ̃1(r)]

+(ε1 − (ε+ ∆ε))∆χ̃1(r)

≈ −∆ε[1 − χ̃1(r)] + (ε1 − ε)∆χ̃1(r), (11)

−(1−c)
∆ε
3ε

+∆c
ε1 − ε

2ε+ ε1
= 0 ⇒ 1−c =

ε − ε1

ε0 − ε1

(
ε0

ε

)1/3
. (12)
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Compact group approach (CGA)
Basic examples

I Asymmetric Bruggeman approach
High concentrations limit:

δε(h)ABM(r) ≈ −[1 − χ̃0(r)]∆ε+ (ε0 − ε)∆χ̃0(r)

= −χ̃1(r)∆ε − (ε0 − ε)∆χ̃1(r). (13)

c =
ε − ε0

ε1 − ε0

(
ε1

ε

)1/3
. (14)

I The Looyenga and Lichtenecker rules

δεLL(r) = (f(ε0) − f(ε))(1 − χ̃1(r)) + (f(ε1) − f(ε))χ̃1(r) (15)

f(x) = x1/3
⇒ ε1/3 = (1 − c)ε1/3

0 + cε1/3
1 ,

f(x) = log x ⇒ log ε = (1 − c) log ε0 + c log ε1
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Differential scheme within the CGA
General results

Suppose that an infinitesimal addition of inclusions to the system
causes the filler concentration and the effective permittivity to change
by small ∆c and ∆ε, respectively. In view of the δεCGA form (9), the
new permittivity distribution in the system becomes

δ̃εCGA(r) = δε(l)ABM(r) + δε(h)ABM(r) + δεCGA(r), (16)

which is brings us to the differential equation[
ε1 − ε

2ε+ ε1
dc − (1 − c)

3ε0

(2ε+ ε0)2
dε

]
+

[
−
ε0 − ε

2ε+ ε0
dc − c

3ε1

(2ε+ ε1)2
dε

]
= 0. (17)
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Differential scheme within the CGA
General results

Low concentration limit

δ̃ε
(l)
CGA ≈ δε

(l)
ABM + δεCGA, (18)

dc
1 − c

= dε
3ε0(2ε+ ε1)

(ε1 − ε)(2ε+ ε0)2
, (19)

High concentration limit

δ̃ε
(h)
CGA ≈ δε

(h)
ABM + δεCGA, (20)

dc
c

= −dε
3ε1(2ε+ ε0)

(ε0 − ε)(2ε+ ε1)2
. (21)

δεCGA can be neglected if (1) ε0 ≈ ε and ε1 ≈ ε, respectively; (2) the
concentration of the constituent being added is small; (3) |ε1 − ε0| is
small as well.
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Differential scheme within the CGA
Improved ABM mixing rules

The integration of the obtained equations results in the following
mixing rules:

Low concentration limit

ln (1 − c) =
9ε0ε1

(2ε1 + ε0)2
ln

[
3ε0(ε − ε1)

(ε0 − ε1)(2ε+ ε0)

]
−

2(ε0 − ε1)(ε0 − ε)

(2ε1 + ε0)(2ε+ ε0)
; (22)

High concentration limit

ln c =
9ε0ε1

(2ε0 + ε1)2
ln

[
3ε1(ε − ε0)

(ε1 − ε0)(2ε+ ε1)

]
−

2(ε1 − ε0)(ε1 − ε)

(2ε0 + ε1)(2ε+ ε1)
. (23)
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Differential scheme within the CGA
Analysis of the results
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Figure: The concentration dependence of ε according to: the new low- (22)
and high-concentration (23) rules (thick solid lines 1 and 2, respectively);
Hashin-Shtrikman bottom and upper bounds (thin solid lines 3 and 4); CGA
(10) (dashed line); original ABM low- (12) and high-concentration (14) rules
(dotted lines 5 and 6). The only parameter used ε1/ε0 = 102.
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Conclusion

I The classical asymmetrical Bruggeman model (ABM) mixing
rules are, in general, physically inconsistent and applicable only
for diluted (with respect to one of the constituents) systems with
low dielectric contrast between the constituents.

I The overall changes in ε due to addition of an infinitesimal
portion of one constituent include the contributions from both
constituents (inclusions and the host medium) and depend on
the state of the system before the addition.

I The new generalized differential mixing rules are, again,
applicable only in certain concentration ranges because beyond
those they do not satisfy the Hashin-Shtrikman bounds.

I The results obtained can be generalized to macroscopically
homogeneous and isotropic systems with quasistatic complex
permittivities of the constituents.
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Thank you for your attention!


	Introduction
	Classical homogenization models
	Symmetrical effective-medium approach
	Asymmetrical effective-medium approach

	Compact group approach (CGA)
	Physical interpretation
	Mathematical basis
	General result
	Basic examples

	Differential scheme within the CGA
	General results
	Improved ABM mixing rules
	Analysis of the results

	Conclusion

