X Conference of Young Scientists "Problems of Theoretical Physics" Contribution ID: 27 Type: Oral

Backward nucleon production by heavy baryonic resonances in proton-nucleus collisions

Tuesday, 24 December 2019 17:35 (20 minutes)

The production of backward nucleons, $N(180^{\circ})$, at 180° in the nuclear target rest frame in proton-nucleus $(p^{-}+A)$ collisions is studied. The backward nucleons appearing outside of the kinematically allowed range of proton-nucleon $(p^{-}+N)$ reactions are shown to be due to secondary reactions of heavy baryonic resonances produced inside the nucleus. Baryonic resonances R created in primary $p^{-}+N$ reactions can change their masses and momenta due to successive collisions $R+N \rightarrow R+N$ with other nuclear nucleons. Two distinct mechanisms and kinematic restrictions are studied: the reaction $R + N \rightarrow N(180^{\circ}) + N$ and the resonance decay $R \rightarrow N(180^{\circ}) + \pi$. Simulations of $p^{-}+A$ collisions using the Ultra-relativistic Quantum Molecular Dynamics model support these mechanisms and are consistent with available data on proton backward production.

Primary author: PANOVA, Oleksandra (Taras Shevchenko National University of Kyiv)
Presenter: PANOVA, Oleksandra (Taras Shevchenko National University of Kyiv)
Session Classification: Physics of Nuclei and Elementary Particles

Track Classification: Physics of Nuclei and Elementary Particles