Contribution ID: 46

Thermodynamic properties of an interacting boson system

Tuesday, 24 December 2019 16:35 (20 minutes)

We consider the thermodynamical properties of an interacting boson system at finite temperatures and zero chemical potential within the framework of the Skyrme-like mean-field model. Self-consistency relations between the mean field and thermodynamic functions are derived. For illustration of our approach the thermodynamic properties of a π -meson system are investigated. We numerically solved the self-consistent equation for a particle density and derived all thermodynamical functions as functions of the temperature for different values of an attractive constant of coupling κ . It is shown that for some values of κ this system develops a first-order phase transition via formation of the Bose condensate at non-zero temperatures. Phase diagrams and the pressure p/T^4 , energy density ϵ/T^4 , entropy density s/T^3 , trace anomaly $(\epsilon - 3p)/T^4$, specific heat C_V/T^3 , and the speed of sound c_s^2 are calculated in the liquid-gas and condensed phases.

Primary authors: Mr ZHURAVEL, D. (Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv); Mr STASHKO, O.S. (Taras Shevchenko National University of Kyiv); Mr AN-CHISHKIN, D.V. (Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv); Mr MISHUSTIN, I.N. (Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany/ National Research Center "Kurchatov Institute", 123182 Moscow, Russia); Mr STOCKER, H. (Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany/ Johann Wolfgang Goethe University, D-60438 Frankfurt am Main, Germany)

Presenter: Mr ZHURAVEL, D. (Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv)

Session Classification: Physics of Nuclei and Elementary Particles