Phase diagram and dualities in two color QCD

Roman N. Zhokhov IZMIRAN, IHEP

XI Conference of young scientists "Problems in Theoretical Physics"

Russian Science Foundation

БАЗИС

Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

in the broad sense our group stems from Department of Theoretical Physics, Moscow State University Prof. V. Ch. Zhukovsky

details can be found in

Eur.Phys.J.C 80 (2020) 10, 995 arXiv:2005.05488 [hep-ph] JHEP 06 (2020) 148 arXiv:2003.10562 [hep-ph]
Phys.Rev. D100 (2019) no.3, 034009 arXiv: 1904.07151 [hep-ph] JHEP 1906 (2019) 006 arXiv:1901.02855 [hep-ph]
Eur.Phys.J. C79 (2019) no.2, 151, arXiv:1812.00772 [hep-ph],
Phys.Rev. D98 (2018) no.5, 054030 arXiv:1804.01014 [hep-ph],
Phys.Rev. D97 (2018) no.5, 054036 arXiv:1710.09706 [hep-ph]
Phys.Rev. D95 (2017) no.10, 105010 arXiv:1704.01477 [hep-ph]

The work is supported by Russian Science Foundation (RSF) under grant number 19-72-00077

 Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики

Two main phase transitions

- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase

QCD Phase Diagram

Two main phase transitions

- ► confinement-deconfinement
- chiral symmetry breaking phase—chriral symmetric phase

QCD at extreme conditions

QCD at T and μ (QCD at extreme conditions)

► Early Universe

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- ▶ neutron star mergers

QCD at T and μ (QCD at extreme conditions)

- ► Early Universe
- ▶ heavy ion collisions
- ▶ neutron stars
- ▶ proto- neutron stars
- neutron star mergers

QCD Dhase Diagram and Approaches

lattice QCD at non-zero baryon chemical potential $\mu_{B^{14}}$

$$Z = \int D[gluens] D[guardes] e^{-N_{acD}^{rE}}$$

$$Z = \int D[gluens] Det D(M) e^{-N_{gluens}^{rE}}$$

It is well known that at non-zero baryon chemical potential μ_B lattice simulation is quite challenging due to the sign problem complex determinant

$$(Det(D(\mu)))^{\dagger} = Det(D(-\mu^{\dagger}))$$

QCD Dhase Diagram and Approaches

Methods of dealing with QCD

▶ Perturbative QCD

► First principle calculation - lattice QCD

Methods of dealing with QCD

▶ Perturbative QCD

- ► First principle calculation - lattice QCD
- ► Effective models
- ► DSE, FRG

Nambu–Jona-Lasinio model

$$\mathcal{L} = \bar{q}\gamma^{\nu}\mathrm{i}\partial_{\nu}q + \frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q}\mathrm{i}\gamma^5 q)^2 \Big]$$
$$q \to e^{i\gamma_5\alpha}q$$

continuous symmetry

$$\begin{split} \widetilde{\mathcal{L}} &= \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \sigma - \mathrm{i} \gamma^5 \pi \Big] q - \frac{N_c}{4G} \Big[\sigma^2 + \pi^2 \Big]. \\ \mathbf{Chiral \ symmetry \ breaking} \\ 1/N_c \ \mathrm{expansion, \ leading \ order} \\ &\quad \langle \bar{q}q \rangle \neq 0 \\ &\quad \langle \sigma \rangle \neq 0 \quad \longrightarrow \quad \widetilde{\mathcal{L}} = \bar{q} \Big[\gamma^{\rho} \mathrm{i} \partial_{\rho} - \langle \sigma \rangle \Big] q \end{split}$$

More external conditions to QCD

More than just QCD at (μ, T)

- more chemical potentials μ_i
- ▶ magnetic fields
- rotation of the system $\vec{\Omega}$
- ▶ acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

More external conditions to QCD

- More than just QCD at (μ, T)
 - more chemical potentials μ_i
 - ▶ magnetic fields
 - ▶ rotation of the system
 - acceleration
 - finite size effects (finite volume and boundary conditions)

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3q = \nu\left(\bar{q}\gamma^0\tau_3q\right)$$
$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is

 $\mu_5 \bar{q} \gamma^0 \gamma^5 q$

Chiral magnetic effect

A. Vilenkin, PhysRevD.22.3080,
 K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033

$$n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$$

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

Dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle,$$
 CSB phase: $M \neq 0,$

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle,$$
 PC phase: $\pi_1 \neq 0,$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

 $\Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\nu,\nu_5,...,M,\pi,...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$
$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

 $\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$

Duality in the phase portrait

Figure: NJL model results

$$\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$$

$$\mathcal{D}: \ M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

Dualities on the lattice

 $(\mu_B, \mu_I, \mu_{I5}, \mu_5)$ $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$

• QCD at $\mu_5 - (\mu_5, T)$

V. Braguta, A. Kotov et al, ITEP lattice group

▶ **QCD** at μ_I — (μ_I, T)

G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()

 T_c^M as a function of μ_5 (green line) and $T_c^{\pi}(\nu)$ (black)

Uses of Dualities How (if at all) it can be used

Let us discuss only Inhomogeneous phases (case)

discussed in Particles 2020, 3(1), 62-79

schematic (ν_5, μ) -phase diagram

 $(\mu,\nu) \longrightarrow (\mu,\nu_5)$

Figure: (ν, μ) -phase diagram.

M. Buballa, S. Carignano, J. Wambach, D.

Nowakovski, Lianyi He et al.

Figure: (ν_5, μ) -phase diagram

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

Possible phases and their Condensates

Condensates and phases

$$M = \langle \sigma(x) \rangle \sim \langle \bar{q}q \rangle, \qquad \text{CSB phase:} \quad M \neq 0,$$

$$\pi_1 = \langle \pi_1(x) \rangle = \langle \bar{q}\gamma^5 \tau_1 q \rangle, \qquad \text{PC phase:} \quad \pi_1 \neq 0,$$

$$\Delta = \langle \Delta(x) \rangle = \langle qq \rangle = \langle q^T C \gamma^5 \sigma_2 \tau_2 q \rangle, \qquad \text{BSF phase:} \quad \Delta \neq 0.$$

Dualities in QC_2D

$$(b) \qquad \mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \ M \longleftrightarrow \pi_1, \qquad \mathrm{PC} \longleftrightarrow \mathrm{CSB}$$

 $\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|, \quad \text{CSB} \longleftrightarrow \text{BSF}$ (c)

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the mean field approximation

Instead of chiral symmetry $SU_L(2) \times SU_R(2)$ one has Pauli-Gursey flavor symmetry SU(4)

Two colour NJL model

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5\vec{\tau}q)^2 + (\bar{q}i\gamma^5\sigma_2\tau_2q^c) (\overline{q^c}i\gamma^5\sigma_2\tau_2q) \Big]$$

Dualities are connected with Pauli-Gursey group

 $\mathcal{D}_3: \quad \psi_R \to i\tau_1\psi_R$

 $\mu_I \leftrightarrow \mu_{I5}$

 $\bar{\psi}\psi \leftrightarrow i\bar{\psi}\gamma^5\tau_1\psi$

 $M \longleftrightarrow \Delta, \qquad \nu \longleftrightarrow \nu_5, \quad \mu_I \longleftrightarrow \mu_{I5}$

$$\begin{split} &i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi\leftrightarrow i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi, \quad \bar{\psi}^C\sigma_2\tau_2\psi\leftrightarrow \bar{\psi}^C\sigma_2\tau_2\psi\\ &\bar{\psi}\tau_2\psi\leftrightarrow \bar{\psi}\tau_3\psi, \quad \bar{\psi}\tau_1\psi\leftrightarrow i\bar{\psi}\gamma^5\psi, \quad i\bar{\psi}\gamma^5\tau_2\psi\leftrightarrow i\bar{\psi}\gamma^5\tau_3\psi \end{split}$$

There is also \mathcal{D}_1 and \mathcal{D}_2

Dualities are connected with Pauli-Gursey group

Dualities were found in

- In the framework of NJL model beyond mean field

- In QC_2D non-pertubartively (at the level of Lagrangian)

Duality \mathcal{D} is a remnant of chiral symmetry

Duality was found in

- ▶ In the framework of NJL model beyond mean field or at all orders of N_c approximation
- In QCD non-pertubartively (at the level of Lagrangian)

▶ $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied in two color color case

- It was shown that there exist dualities in QCD and QC₂D
 Richer structure of Dualities in the two colour case
- There have been shown ideas how dualities can be used Duality is not just entertaining mathematical property but an instrument with very high predictivity power
- Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality has been shown non-perturbarively in QCD