We revisit the Polyakov Loop coupled Nambu-Jona-Lasinio model that maintains the Polyakov loop dynamics in the limit of zero temperature, which is of interest for astrophysical applications. For this purpose we re-examine the form of the potential for the deconfinement order parameter at finite baryonic densities. Secondly, and the most important, we explicitly demonstrate that a modification...
This report is devoted to lattice study of QCD equation of state (EOS) at finite baryon chemical potential and nonzero magnetic field. The simulations are performed with rooted dynamical staggered $u$, $d$, $s$ quarks at physical quark masses. In order to avoid the sign problem, the study is carried out at imaginary chemical potential and the results are analytically continued to real...
There were many phase transitions during the evolution of our Universe. The electroweak phase transition and deconfinement were two of them. The electroweak phase transition happened near 100 GeV and due to Higgs mechanism the leptons, quarks and gauge bosons gained mass. The deconfinement phase transition happened near 150 MeV and quarks combined to each other, as a result baryons and mesons...
$\qquad$According to present day results of the LHC experiment data analysis, there were no dark matter candidates found. The purpose of this work is to present a possible theoretical explanation why it could be so.
$\qquad$In our consideration, we propose a simple dark matter model of the heavy fermions described by the field $\psi$. A visible matter is modeled by the pair of scalar fields –...
The chemical freeze-out parameters in central nucleus-nucleus collisions are extracted consistently from hadron yield data within the quantum van der Waals (QvdW) hadron resonance gas model. The beam energy dependences for skewness and kurtosis of net baryon, net electric, and net strangeness charges are predicted. The QvdW interactions in asymmetric matter, $Q/B \neq 0.5$, between...
The problem of fast charged particles scattering in a thin layer of crystalline and amorphous matter is considered [1]. There is suggested an approach that allows one to consider the process of scattering in such targets from a single point of view. The approach is based on the Born and Eikonal approximations of the quantum scattering theory [2]. In the case of scattering in a crystal, special...
We consider the thermodynamical properties of an interacting boson system at ?finite temperatures and zero chemical potential within the framework of the Skyrme-like mean-fi?eld model. Self-consistency relations between the mean fi?eld and thermodynamic functions are derived. For illustration of our approach the thermodynamic properties of a $\pi$-meson system are investigated. We numerically...
The nuclear liquid-gas transition at normal nuclear densities, n∼n0=0.16 fm−3, and small temperatures, T∼20 MeV, has a large influence on analytic properties of the QCD grand-canonical thermodynamic potential. A classical van der Waals equation is used to determine these unexpected features due to dense cold matter qualitatively. The existence of the nuclear matter critical point results in...
Bose-Einstein condensation (BEC) and particle number fluctuations are considered in the gas of bosons with repulsive interactions between particles. Two different mean-field models of the interacting Bose gas are studied. They provide rather different predictions for the BEC transition temperatures and the scaled variances of particle number fluctuations. The behavior of the BE condensate in...
The production of backward nucleons, $N(180^\circ)$, at $180^\circ $ in the nuclear target rest frame in proton-nucleus (p~+~$A$) collisions is studied. The backward nucleons appearing outside of the kinematically allowed range of proton-nucleon (p~+~$N$) reactions are shown to be due to secondary reactions of heavy baryonic resonances produced inside the nucleus. Baryonic resonances $R$...
The Standard Model (SM) is the best theory of particle physics for today, giving precise predictions. However, it fails to explain some fundamental problems such as the strong CP problem, neutrino oscillations, matter-antimatter asymmetry, and the nature of dark matter and dark energy.
To resolve these problems it seems reasonable to add new particles to the SM. Since these particles are not...