We consider the property of compressibility of the binary granular mixture paying attention to their local structurization. The Kirkwood-Buff theory [1] has been used in order to provide theoretical description of the free volume and compessibility of model bi-component system [2]. Relevant characters of compactivity has been expressed in terms of partial properties of species. For theoretical...
One of the most remarkable manifestations of quantum properties of superconductors and superfluids is formation of Josephson vortices (JVs), alias fluxons, in long Josephson junctions.
In this work, we studied weak- and strong-coupled systems of two parallel superfluid rings with different angular momenta. Atomic Bose-Einstein condensates loaded in a dual-ring trap (two rings separated by a...
Hawking radiation is one of the most fascinating phenomena taking place near the black hole horizon. Featuring both gravitational and quantum properties this effect is extremely hard to observe on the real objects. Surprisingly, it is possible to mimic evaporation of particles on the acoustic analogs, where Bose-Einstein condensate plays a role of background giving birth for Hawking pairs....
Pyroelectric (PE) and electrocaloric (EC) properties on the ferroelectric-antiferroelectric phase boundary of ferroelectric (FE) thin films, multilayers and other low-dimensional materials can significantly differ from PE and EC properties of bulk single crystals, solid solutions and ceramics. In fact, even for FE nanoparticles, for which efficient synthesis procedures and methods for...
In contrast to conservative systems, in nonlinear media with gain and loss the dynamics of localized topological structures exhibit many unique features that can be controlled externally. We propose a robust mechanism to perform topological transformations changing characteristics of dissipative vortices and their complexes in a controllable way. We show that a properly chosen control carries...
In recent years, there has been an increase in studies focused on the size-dependent contact angle. In the case of the sessile axial symmetric droplet, the size dependence often is explained by the contribution of the line tension to the Helmholtz free energy as a consequence, the modified Young's equation. There are two major points of view on the contribution mechanism. According to the...
Mathieu equation appears in different fields of physics and usually it's known as Schrodinger equation with cosine as potential but in more general sense it's a certain specification of confluent Heun equation. Heun equation is a second order ordinary differential equation with rational coefficients, with four regular singular points. Without loss of generality we can put these points in...
The solution of the problem of fermions scattering in one Aharonov-Bohm vortex involves constructing a one-parameter family of self-adjoint extensions. The Green function can be constructed from the corresponding solutions. The following is a comparison of quantum-mechanical scattering problem with quantum field theory problem on the search for correlation functions of fermion states. Namely,...
Axions are hypothetical particles beyond the Standard Model. Their existence is postulated to resolve the strong CP problem in QCD. The existence of the axion-like particles should modify the visible spectra of the cosmic objects due to their coupling to photons in the presence of a magnetic field, for example, inside galaxy clusters. For this reason, they were proposed as one of the...
We present the result of modelling of spectral energy distribution of the infrared source IRAS 22150+6109. The object emits an excess of radiation in far infrared band. It was interpreted to be a young massive pre-main-sequence star and the protoplanetary disk on late stage. We use radiative transfer code RADMC-3D for the simulations of spectral energy distribution. The code itself implements...
The concept of atomic covalent radius forms the basis for one of the simplest parameterizations for prediction of the covalent bond length and recovering molecular graphs from the set of interatomic distances. In the present contribution we adopt the recently proposed dataset [1] of covalent bond lengths resulting from the first-principle calculations to derive the covalent radii for H, B, C,...
Enhancement of therapeutic activity of organic drug molecules bound to nanoparticle surface has recently been highlighted as a possible way to overcome resistance of bacteria towards traditional antibiotics [1]. Investigation of the physical interactions responsible for such complexation, however, becomes challenging when nanoparticle is formed by transition metal atoms due to the need of...
The possibility of GPU usage combined with the substitution of numerical computations with the trained neural network for both relativistic and non-relativistic hydrodynamic equations yields the 104 - 106 performance boost compared to the standard numerical methods. The main idea behind the work starts from the fact that neural network is the so-called perceptron on the universal type. The...
Transport processes play a significant role in the evolution of non-equilibrium plasmas. Various instabilities which exist in such plasma can generate intense fields that interact with particles and cause the anomalous transport. The intensity of the generated fields can be high enough to cause anomalous transport exceeding the collisional one. The possible explanation of a significant...