24-26 September 2024
Bogolyubov Institute for Theoretical Physics (Section 1-4), Institute of Mathematics (Section 5)
Europe/Kiev timezone

Two-dimensional central extensions of some superconformal loop Lie algebra generalization and compatibly bi-Hamiltonian $(2|N+1)$-dimensional systems on functional supermanifolds

Not scheduled
20m
Institute of Mathematics

Institute of Mathematics

3, Tereschenkivska Str., Kyiv, 01024, Ukraine
Poster MATHEMATICS MATHEMATICS

Speaker

Oksana Hentosh (Pidstryhach IAPMM, NAS of Ukraine)

Description

For $N\in \{ 1,2,3 \}$ there is considered the semi-direct sum $ \tilde {\mathcal G} \propto \tilde {\mathcal G} _{reg}^*$ of the loop Lie algebra $ \tilde {\mathcal G}$, consisting of the even left superconformal vector fields on a supercircle $\mathbb S^{1|N}$ in the form $\tilde a := a \partial / \partial x + \frac 12 \sum \nolimits _{i=1}^N (D_{\vartheta_i} a)D_{\vartheta_i},$ where $ a:=a(x,\vartheta;\lambda) \in $ $C ^{\infty}(\mathbb S^{1|N} \times (\mathbb D^1_+ \cup \mathbb D^1_-);\Lambda_0) $ is holomorphic in the "spectral" parameter $\lambda\in $ $\mathbb D^1_+\cup \mathbb D^1_- \subset \mathbb C$, $ \mathbb D^1_+, \mathbb D^1_-$ are the interior and exterior regions of the unit centrally located disk $\mathbb D^1 \subset \mathbb C$ respectively, $a(x,\vartheta; \infty) = 0 $, $(x,\vartheta )\in \mathbb S^{1|N} \simeq \mathbb S^1 \times \Lambda _1^N$, $\Lambda: = \Lambda_0 \oplus \Lambda_1$ is a commutative Banach superalgebra over the field $\mathbb C \subset \Lambda _0$, $\partial / \partial x$ is a partial derivative by the commuting variable $x$, $\vartheta:=(\vartheta_1, \vartheta_2, \ldots , \vartheta_N)$, $\partial / \partial \vartheta_i$ is a left partial derivative by the anticommuting variable $\vartheta_i \in \Lambda _1$, $D_{\vartheta_i}:= $ $\partial / \partial \vartheta_i + \vartheta_i \partial / \partial x $, $i=\overline{1,N}$, and its regular dual space $\tilde {\mathcal G} _{reg}^*$ with respect to the parity $(\tilde a, \tilde l )_0 = \mbox{res}_{\lambda \in \mathbb C} \, \int \nolimits _{\mathbb S ^{1|N}} dx d\vartheta_1 \ldots d\vartheta_N \, ( a l) ,$ where $\mbox{res}_{\lambda \in \mathbb C}$ denotes the coefficient at $\lambda ^{-1}$ in the corresponding Laurent series, $\tilde l \in \tilde {\mathcal G} _{reg}^*$ is a right superdifferential 1-form on $\mathbb S ^{1|N}$ such as $ \tilde l: = (dx - \sum \nolimits _{i=1}^N ( d\vartheta _i ) \vartheta_i ) l(x,\vartheta ;\lambda ) \in \tilde {\mathcal G} _{reg}^* ,$ $l:=l(x,\vartheta;\lambda)\in $ $ C^{\infty }(\mathbb S^{1|N}\times (\mathbb D^1_+\cup \mathbb D^1_-);\Lambda _{s})$ is holomorphic in the "spectral" parameter $\lambda\in $ $\mathbb D^1_+ \cup \mathbb D^1_-$, $l(x,\vartheta;\infty )=0$, $s=1$ if $N$ is an odd natural number and $s=0$ if $N$ is an even one. The loop Lie algebra $\tilde {\mathcal G}$ is splitting into the direct sum $ \tilde {\mathcal G} = \tilde {\mathcal G}_+ \oplus \tilde {\mathcal G}_-$ of its Lie subalgebras for which $\tilde {\mathcal G}_{+,reg}^* \simeq \tilde {\mathcal G}_- $, $\tilde {\mathcal G}_{-,reg}^* \simeq \tilde {\mathcal G}_+$, where $ a(x,\vartheta ;\infty )=0$ for any $\tilde a \in \tilde {\mathcal G}_- $. On $ \tilde {\mathcal G} \propto \tilde {\mathcal G} _{reg}^*$ one determines the commutator $ [\tilde a \propto \tilde l , \tilde b \propto \tilde m ]: = $ $ [\tilde a ,\tilde b] \propto (ad^*_{\tilde a} \tilde m - ad^*_{\tilde b}\tilde l)$ for any $ \tilde a , \tilde b \in \tilde {\mathcal G}$ and $\tilde l , \tilde m \in \tilde {\mathcal G} _{reg}^*$, where $ [\tilde a , \tilde b] : = $ $ \tilde c $, $ \tilde c \in \tilde {\mathcal G} $, $c:= a (\partial b /\partial x ) - b (\partial a /\partial x) + \frac 12 \sum \nolimits _{i=1}^N (D_{\vartheta_i} a)(D_{\vartheta_i}b)$, $ ad^*$ is the coadjoint action of $\tilde {\mathcal G}$ with respect to the parity $(.,.)_0$, as well as the symmetric bilinear form $(\tilde a \propto \tilde l, \tilde b \propto \tilde m ) _0 = (\tilde a , \tilde m )_0 + (\tilde b, \tilde l)_0 $. One constructs the central extensions $\hat {\mathfrak G}:= \tilde {\mathfrak G} \oplus \mathbb C^2$ of the Lie algebra $\tilde {\mathfrak G}:= \prod_{z\in\mathbb{S}^{1}} ( \tilde {\mathcal G} \propto \tilde {\mathcal G} _{reg}^*) $ by the superanalogs of the Ovsienko-Roger 2-cocycle such as $\omega_2 (\tilde a \propto \tilde l, \tilde b \propto \tilde m ): = $ $ (\omega^1_2 (\tilde a \propto \tilde l, \tilde b \propto \tilde m ), $ $ \omega^2_2 (\tilde a \propto \tilde l, \tilde b \propto \tilde m )),$ where $ \omega^1_2 (\tilde a \propto \tilde l, \tilde b \propto \tilde m ) = \mbox{res}\, \int \nolimits _{\mathbb S ^1 } dz \, \int \nolimits _{\mathbb S ^{1|N}} dx d^N\vartheta \, ( a (\mathcal P b)) ,$ $\omega^2_2 (\tilde a \propto \tilde l, \tilde b \propto \tilde m ) = \int \nolimits _{\mathbb S ^1 } dz \, ( ( a , \partial m /\partial z )_0 - ( b , (\partial l /\partial z )_0 ),$ $(\tilde a \propto \tilde l), (\tilde b \propto \tilde m) \in $ $ \tilde {\mathfrak G}$, $z\in \mathbb S ^1$, and $\mathcal P=D_{\vartheta_1}\partial^2 /\partial^2 x$ when $N=1$, $\mathcal P=D_{\vartheta_1} D_{\vartheta_2} \partial /\partial x $ when $N=2$, $\mathcal P=D_{\vartheta_1} D_{\vartheta_2} D_{\vartheta_3}$ when $N=3$.

Since the Lie algebra $\tilde {\mathfrak G}$ permits the standard splitting $\tilde {\mathfrak G}:= \tilde {\mathfrak G}_+ \oplus \tilde {\mathfrak G}_-$ into a direct sum of its Lie subalgebras $\tilde {\mathfrak G}_+: = \prod_{z\in\mathbb{S}^{1}} (\tilde {\mathcal G}_+ \propto \tilde {\mathcal G} _{-,reg}^*)$ and $\tilde {\mathfrak G}_-: = $ $ \prod_{z\in\mathbb{S}^{1}} (\tilde {\mathcal G}_- \propto \tilde {\mathcal G} _{+,reg}^*))$, on its dual space $\tilde {\mathfrak G}^* $ with respect to the symmetric bilinear form $\langle .,. \rangle _0 : = \int \nolimits _{\mathbb S ^1 } dz \, (.,.) _0 $ one can introduce for any smooth by Frechet functionals $\mu, \nu \in \mathcal D(\tilde {\mathfrak G}^*)$ the $\mathcal R$-deformed Lie-Poisson bracket $ \{\mu , \nu \}_{\mathcal R} (\tilde a \propto \tilde l) = $ $ \langle \tilde a \propto \tilde l, [R \nabla_r \mu (\tilde a \propto \tilde l), \nabla_l \nu (\tilde a \propto \tilde l)] + [\nabla_r \mu (\tilde a \propto \tilde l), R\nabla_l \nu (\tilde a \propto \tilde l)] \rangle _0 + $ $ < e, \omega_2 (R \nabla_r \mu (\tilde a \propto \tilde l), \nabla_l \nu (\tilde a \propto \tilde l)) + \omega_2 (\nabla_r \mu (\tilde a \propto \tilde l), R\nabla_l \nu (\tilde a \propto \tilde l)) >$,
where $e=(e_1,e_2) \in \mathbb C^2$, the brackets $<.,.>$ denote the scalar product on $\mathbb C^2$, $\mathcal R=(P_+-P_-)/2$, $P_+$ and $P_-$ are projectors on $\tilde {\mathfrak G} _+$ and $\tilde {\mathfrak G} _-$ respectively, $\nabla_l h (\tilde a \propto \tilde l):= (\nabla_l h_{\tilde l} \propto \nabla_l h_{\tilde a}) \in \tilde {\mathfrak G}$ and $\nabla_r h (\tilde a \propto \tilde l):= (\nabla_r h_{\tilde l} \propto \nabla_r h_{\tilde a}) \in \tilde {\mathfrak G}$ are left and right gradients of an arbitrary smooth functional $h\in \mathcal D(\tilde {\mathfrak G}^*)$ at $(\tilde a \propto \tilde l) \in \tilde {\mathfrak G}^*$, which due to the Adler-Kostant-Symes theory generates the hierarchy of Hamiltonian flows on $\tilde {\mathfrak G}^* \simeq \tilde {\mathfrak G}$ in the form $\partial (\tilde a \propto \tilde l)/\partial t_p = $ $ \{ \tilde a \propto \tilde l , h^{(p)} (\tilde a \propto \tilde l) \}_{\mathcal R}, $ $p\in \mathbb Z_+,$ where $h^{(p)} (\tilde a \propto \tilde l ) = \lambda ^{p} h (\tilde a \propto \tilde l )$, for the Casimir invariant $h\in I(\hat {\mathfrak G}^*)$. The reductions of this hierarchy on polynomial type coadjoint orbits of the Lie algebra $\hat {\mathfrak G}$ are shown to lead to hierarchies of compatibly bi-Hamiltonian $(2|N+1)$-dimensional systems on functional supermanifolds.

Primary author

Oksana Hentosh (Pidstryhach IAPMM, NAS of Ukraine)

Presentation Materials

There are no materials yet.