24-26 September 2024
Bogolyubov Institute for Theoretical Physics (Section 1-4), Institute of Mathematics (Section 5)
Europe/Kiev timezone

Approximation by interpolation trigonometric polynomials in Weyl-Nagy classes $W^r_{\beta,1}$

Not scheduled
20m
Institute of Mathematics

Institute of Mathematics

3, Tereschenkivska Str., Kyiv, 01024, Ukraine
Oral MATHEMATICS MATHEMATICS

Speaker

Ihor Sokolenko (Institute of Mathematics of NAS of Ukraine)

Description

Let $L_{p}$, $1\le p\le\infty,$ and $C$ be the spaces of $2\pi$-periodic functions with standard norms $\|\cdot\|_{L_p}$ and $\|\cdot\|_C$, respectively. Further, let $W^r_{\beta,p},\ r>0,\ \beta\in\mathbb{R},\ 1\le p\le \infty,$ be classes of $2\pi$-periodic functions $f$ that can be represented in the form of convolution

$ f(x)=\frac{a_0}{2}+\frac{1}{\pi}\int\limits_{-\pi}^{\pi}\varphi(x-t) B_{r,\beta}(t)dt, \ \ \ a_0\in\mathbb R,\quad(1)$

with Weyl–Nagy kernels of the form $B_{r,\beta}(t)=\sum\limits_{k=1}^\infty k^{-r}\cos\left(kt-\frac{\beta\pi}2\right),\ $ of function $\varphi$ satisfying the condition

$ \varphi\in B_p^0=\big\{\varphi\in L_p: \|\varphi\|_{L_p}\le1,\ \int\limits_{-\pi}^{\pi}\varphi(t) dt=0\big\}. $

The classes $W^r_{{\beta},p}$ are called the Weyl–Nagy classes, and the function $\varphi$ in representation $(1)$ is called the $(r,\beta)$-derivative of the function $f$ in the Weyl–Nagy sense and denoted by $f^r_\beta$.

Let $f\in C$. By $\tilde{S}_{n-1}(f;x)$ we denote a trigonometric polynomial of degree $n-1$, that interpolates $f(x)$ at the equidistant nodes $x_{k}^{(n-1)}=2k\pi/(2n-1)$, $k\in\mathbb{Z}$, i.e., such that

$ \tilde{S}_{n-1}(f;x_{k}^{(n-1)})=f(x_{k}^{(n-1)}), \quad k\in\mathbb{Z}.$

Theorem 1. Let $r>2,$
$\beta\in\mathbb{R},\ $ $x\in\mathbb{R}$ and $\ n\in\mathbb{N}.$ The following estimate is true

$ \tilde{\cal E}_n(W^r_{\beta,1};x)\!=\!\sup\limits_{f\in W^r_{\beta,1}}\left|f(x)\!-\!\tilde S_{n-1}(f;x)\right|\!=\!\left|\sin\frac{(2n\!-\!1)x}2\right| n^{-r}\left(\frac2{\pi(1\!-\!e^{-r/n})}\!+\!\mathcal{O}(1)\delta_{r,n}\right), $

where $\mathcal{O}(1)$ is a quantity uniformly bounded in all analyzed parameters,

$ \delta_{r,n}= \left\{ \begin{array}{ll} \displaystyle1+\frac n{r(r-2)},&2< r\le n+1,\\ \displaystyle\frac r{n^2}e^{-r/n},&n+1\le r\le n^2,\\ e^{-r/n}%\ \mbox{або} \ \left(1+\frac1n\right)^{-r}, &r\ge n^2.\\ \end{array} \right. $

This work was partially supported by the VolkswagenStiftung project "From Modeling and Analysis to Approximation" and by the grant from the Simons Foundation (1290607, AS) and (1290607, IS).

Primary authors

Anatolii Serdyuk Ihor Sokolenko (Institute of Mathematics of NAS of Ukraine)

Presentation Materials

There are no materials yet.