24-26 September 2024
Bogolyubov Institute for Theoretical Physics (Section 1-4), Institute of Mathematics (Section 5)
Europe/Kiev timezone

Asymptotic behaviour of solutions of the differential equation of the form $y^{(4)}=\alpha_0p(t)\varphi(y)$ with rapidly varying nonlinearity in the case of $\lambda_0=1$.

Not scheduled
20m
Institute of Mathematics

Institute of Mathematics

3, Tereschenkivska Str., Kyiv, 01024, Ukraine
Oral MATHEMATICS MATHEMATICS

Speaker

Сергій Голубєв (Одеський національний університет імені І. І. Мечникова)

Description

1. Introduction.
In this paper we study the asymptotic behaviour of solutions of a fourth order differential equation of the form $y^{(4)}=\alpha_0p(t)\varphi(y)\quad$(1). The purpose of this paper is to obtain the asymptotics $P_\omega(Y_0,\lambda_0)$ solutions of the differential equation (1) for the special case when $\lambda_0=1$.
2. Object of research.
Consider a differential equation of the form (1) where $\alpha_0\in\{-1,1\}$, $p:[a,\omega[\longrightarrow]0,+\infty[$ -is a continuous function, $-\infty $Y_0$ is equal to either $0$, or $\pm\infty$, $\Delta_{Y_0}$ -is a one-sided neighbourhood of $Y_0$.
3. Basic definitions and notations.
The solution $y$ of the differential equation (1) is called $P_\omega(Y_0,\lambda_0)$-solution, where $-\infty\le \lambda_0\le +\infty,$ if it is defined on the segment $[t_0,\omega[\subset[a,\omega[$ and satisfies the following conditions $y(t)\in \Delta_{Y_0}\quad\mbox{at}\quad t\in [t_0,\omega[,\quad\lim\limits_{t\uparrow\omega}y(t)=Y_0,\quad$
$\lim\limits_{t\uparrow\omega}y^{(k)}(t)=\left[\begin{array}{l} \mbox{or}\quad 0,\\ \mbox{or}\quad \pm\infty, \end{array} \right.\ (k=1,2,3),\quad \lim\limits_{t\uparrow\omega}\frac{[y^{(3 )}(t)]^2}{y^{(2)}(t)y^{(4)}(t)}=\lambda_0.$
Let us introduce additional auxiliary notations
$J_0(t)=\int\limits_{A_0}^t p_0^\frac{1}{4}(\tau),\, q(t)=\frac{(\Phi^{-1}(\alpha_0J_0(t)))'}{\alpha_0J_3(t)},\, H(t)=\frac{\Phi^{-1}(\alpha_0J_0(t))\varphi'(\Phi^{-1}(\alpha_0J_0(t)))}{\varphi(\Phi^{-1}(\alpha_0J_0(t)))},\, \\ J_1(t)=\int\limits_{A_1}^t p_0 (\tau)\varphi(\Phi^{-1}(\alpha_0J_0(\tau)))\, d\tau, \, J_2(t)=\int\limits_{A_2}^t J_1(\tau)\, d\tau,\, J_3(t)=\int\limits_{A_3}^t J_2(\tau)\, d\tau,$ where the integration boundary $A_i$ is either $\omega$ or constant and is defined so that the integral tends either to 0 or to $\pm\infty$.
4. Main results.
The following two theorems are valid for equation (1).
Theorem 1. For the existence $P\omega (Y_0, 1)$-solutions of differential equation (1) that the inequalities $\alpha_0\nu_2>0,\ \alpha_0\mu_0 J_0(t)<0,\mbox{at},\ t\in ]a,\omega[,\alpha_0\nu_0<0,\mbox{or},\ Y_0=0,\ \alpha_0\nu_0>0,\mbox{or},\ Y_0=\pm \infty$ (2),
and conditions $\frac{\alpha_0J_3(t)}{\Phi^{-1}(\alpha_0J_0(t))}\sim\frac{J'_1(t)}{J_1(t)}\sim\frac{J'_2(t)}{J_2(t)}\sim\frac{J'_3(t)}{J_3(t)}\sim\frac{(\Phi^{-1}(\alpha_0J_0(t)))'}{\Phi^{-1}(\alpha_0J_0(t))}\mbox{at}\ t\uparrow\omega,\alpha_0\lim_{t\uparrow\omega}J_0(t)=Z_0,$
$\lim_{t\uparrow\omega}\frac{\pi_\omega(t)(\Phi^{-1}(\alpha_0J_0(t)))'}{\Phi^{-1}(\alpha_0J_0(t)))}=\pm\infty,\quad \lim_{t\uparrow\omega}\frac{\pi_\omega(t) J_0'(t)}{J_0(t)}=\pm\infty$ (3). Moreover, for each such solution, the asymptotic representations at$\ y(t)=\Phi^{-1}(\alpha_0J_0(t))\left[1+\frac{o(1)}{H(t)}\right],\,y'(t)=\alpha_0 J_3(t)[1+o(1)],$
$y''(t)=\alpha_0 J_2(t)[1+o(1)],\, y'''(t)=\alpha_0 J_1(t)[1+o(1)]\, (4).$
Theorem 2. Let $p_0 : [a, \omega [ \rightarrow ]0, +\infty [$ - a continuously differentiable function and along with the
(2) - (3) conditions $\lim_{t\uparrow \omega}\frac{q'(t)J_2(t)|H(t)|^\frac14}{J_2'(t)}=0,\quad \lim_{y\to Y_0\atop y\in\Delta_{Y_0}}\frac{\Bigr(\frac{\varphi'(y)}{\varphi(y)}\Bigl)'}{\Bigr(\frac{\varphi'(y)}{\varphi(y)}\Bigl)^2}\Biggr|\frac{y\varphi'(y)}{\varphi(y)}\Biggl|^\frac34=0$ then the differential equation (1) contains at $\alpha_0\mu_0=-1$ a two-parameter family of $P_\omega (Y_0, 1)$-solutions which admit at $t \uparrow \omega$ asymptotic representations (4) and furthermore such first, second and third order derivatives of which satisfy at $t \uparrow \omega$ the asymptotic relations $y'(t)=\alpha_0 J_3(t)\Biggr[1+\frac{o(1)}{|H(t)|^{\frac34}}\Biggl],\ y''(t)=\alpha_0 J_2(t)\Biggr[1+\frac{o(1)}{|H(t)|^{\frac12}}\Biggl],\ y'''(t)=\alpha_0 J_1(t)\Biggr[1+\frac{o(1)}{|H(t)|^{\frac14}}\Biggl].$The question of whether the differential equation (1) has $P_\omega(Y_0,\lambda_0)$- solutions admitting at $t\uparrow\omega$ asymptotic representations (4) in the case when $\alpha_0\mu_0=1$ is still open.
Bibliography: 1. V.M. Evtukhov, A.M. Samoilenko. \ Conditions of existence of vanishing solutions of real nonautonomous systems of quasilinear differential equations at a special point// Ukr. Mat. Mag. - 2010. - 62, № 1. - p. 52-80. 2. Maric V. Regular variation and differential equations. Lecture Notes in Math.,1726(2000).- 127p. 3. А. G. Chernikova, Asymptotic images of solutions of differential equations with rapidly changing nonlinearities, PhD thesis, Odesa (2019)

Primary author

Сергій Голубєв (Одеський національний університет імені І. І. Мечникова)

Co-author

Presentation Materials

There are no materials yet.