I will start my talk with the review of the exciting story of thermoelectricity in which were involved such famous scientists as Luigi Galvani, Alessandro Volta, Thomas Seebeck, Jean Charles Athanase Peltier, Walter Nernst, William Tompson, Nevil Mott, Lars Onsager, philosopher Georg Wilhelm Hegel, political figures like Napoléon Bonaparte.
Then I will pass to the main concepts of...
In recent years nanoscale transistors gain more scientific interest. The single-molecule transistor, where vibrating molecule is placed between two massive electrodes, appears to be a challenging device for further fundamental study and application in electronics. In this device along with the possibility of elastic tunneling the electrons can tunnel inelastically, emitting or absorbing...
Bulk TMDs are typically non-polar centrosymmetric semiconductors with a relatively wide band gap ~(1.1 – 2) eV [1], however, on transition from the bulk form to the nanoscale additional orderings emerge [2, 3]. The properties of low-dimensional (LD) transition metal dichalcogenides (TMDs) with a chemical formula MX2 (M – metal Mo, W, Re; X – chalcogen S, Se, Te) and Janus-compounds (JC) with a...
Ferroelectrics are among the most interesting objects for fundamental and applied studies of spontaneous polarization dynamics. Special efforts are intended to answer the question on how complex topological states such as flux-closure domains, polarization vortices, or skyrmions, which sometimes exist in nanosized ferroelectrics, can be controlled by elastic forces and/or electric...
When we drive quantum two-level systems (or qubits) by periodical signals, we obtain repeatedly Landau-Zener-Stückelberg-Majorana (LZSM) transitions, which relates to the tunneling in qubits [1]. Recent interest for studying these repeated transitions is caused by the success in creation of the first quantum computing machines which are based on different types of connected driven qubits. We...
A double quantum dot system is a mesoscopic system with quantum properties in a semiconductor. It is one of the realizations of a two-qubit system. An external periodical driving of parameters of the system with avoided-level crossing causes nonadiabatic transitions and results in coherent interference fringes in the system’s occupation probabilities. For qubits with repelling energy levels,...
We study quasi-one-dimensional arrays of inductively coupled Josephson junctions with only self-inductance of a cell taken into account. A 2-row anisotropic Josephson junction ladder (JJL) has a flat band in the linear electromagnetic wave spectrum [1]. We derive the equations of motion for a 3-row anisotropic JJL and generalise them for a ladder with an arbitrary number of rows $ \kappa \geq...
Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems that host tightly-bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX$_2$ (X...
This work presents the results of theoretical and experimental studies and control of the properties (dispersion, polarization, phase and spatial distribution, directivity, optical spin) of surface electromagnetic waves localized on anisotropic resonant metasurfaces in the optical, near-IR and microwave ranges.
It is known [1] that in systems with Cooper pairing a specific collective excitations can exist, such as: the Anderson–Bogoliubov mode (oscillations of the phase of the order parameter), the Schmid mode (oscillations of the modulus of the order parameter), and the Carlson–Goldman mode (coupled oscillations of the phase of the order parameter and the scalar potential). These modes can exist...
Regular domain structures (RDS) with submicron period are widely used in nonlinear optics, non-volatile memory and laser investigations, which causes a significant interest in research to create the new methods for its fabrication. Classical methods of the RDSs formation do not allow us to achieve the required high precision necessary for modern devices. Within the framework of the Landau –...
Magnetic vortex is known to form a ground state of magnetic nanodisk with easy-plane anisotropy [1]. A perpendicularly magnetized disk in a nanostack can also support the vortex state due to the interlayer exchange coupling with the vortex state thick layer [2].
Fig.1: Phase diagram of different...
An emerging field of curvilinear magnetizm brings about new geometry-induced phenomena in usual magnetic materials, balancing between fundamental research, material sciences and technologies [1]. Modern technological advances allow to consider antiferromagnets (AFMs) as promising building blocks for spintronic and spin-orbitronic applications [2]. In this respect, curvilinear spin chains with...
In the present work we calculated size characteristics of periodic hyperbranched polymers in dilute solution in the vicinity of the $\theta$ point using the continuous chain model. This model in its Gaussian approximation allows to receive exact solutions. Both the gyration radius and the hydrodynamic radius were calculated for the bottle-brush polymer and a tree-like one. We considered the...